cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182978 Total number of parts that are the smallest part or the largest part in all partitions of n.

This page as a plain text file.
%I A182978 #15 Nov 03 2015 03:18:57
%S A182978 1,3,6,12,20,34,52,80,116,170,236,333,453,621,825,1111,1455,1923,2487,
%T A182978 3239,4149,5342,6770,8625,10852,13698,17107,21413,26567,33019,40721,
%U A182978 50270,61663,75665,92318,112686,136849,166173,200923,242836
%N A182978 Total number of parts that are the smallest part or the largest part in all partitions of n.
%H A182978 Alois P. Heinz, <a href="/A182978/b182978.txt">Table of n, a(n) for n = 1..1000</a>
%F A182978 a(n) = A006128(n) - A182977(n).
%e A182978 For n = 6 the partitions of 6 are
%e A182978 6
%e A182978 5 + 1
%e A182978 4 + 2
%e A182978 4 + 1 + 1
%e A182978 3 + 3
%e A182978 3 + (2) + 1 .... the "2" is the part that does not count.
%e A182978 3 + 1 + 1 + 1
%e A182978 2 + 2 + 2
%e A182978 2 + 2 + 1 + 1
%e A182978 2 + 1 + 1 + 1 + 1
%e A182978 1 + 1 + 1 + 1 + 1 + 1
%e A182978 The total number of parts in all partitions of 6 is equal to 35. All parts are the smallest part or the largest part, except the "2" in the partition (3 + 2 + 1), so a(6) = 35 - 1 = 34.
%p A182978 l:= proc(n, i) option remember; `if`(n=i, n, 0)+
%p A182978       `if`(i<1, 0, l(n, i-1) +`if`(n<i, 0, l(n-i, i)))
%p A182978     end:
%p A182978 s:= proc(n, i) option remember; `if`(n=0 or i=1, n,
%p A182978       `if`(irem(n, i, 'r')=0, r, 0)+add(s(n-i*j, i-1), j=0..n/i))
%p A182978     end:
%p A182978 a:= n-> l(n, n) +s(n, n) -numtheory[sigma](n):
%p A182978 seq(a(n), n=1..50);  # _Alois P. Heinz_, Jan 17 2013
%t A182978 l[n_, i_] := l[n, i] = If[n==i, n, 0] + If[i<1, 0, l[n, i-1] + If[n<i, 0, l[n-i, i]]]; s[n_, i_] := s[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[s[n-i*j, i-1], {j, 0, n/i}] ]; a[n_] := l[n, n] + s[n, n] - DivisorSigma[1, n]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Nov 03 2015, after _Alois P. Heinz_ *)
%Y A182978 Cf. A006128, A046746, A092269, A116686, A182977, A182984.
%K A182978 nonn
%O A182978 1,2
%A A182978 _Omar E. Pol_, Jul 17 2011
%E A182978 a(12) corrected and more terms a(13)-a(40) from _David Scambler_, Jul 18 2011