cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182984 Total number of parts that are not the smallest part in all partitions of n.

This page as a plain text file.
%I A182984 #30 Dec 14 2015 03:50:14
%S A182984 0,0,0,1,2,6,9,19,29,48,73,114,161,241,340,479,662,917,1237,1678,2231,
%T A182984 2965,3901,5114,6629,8588,11036,14129,17983,22823,28790,36238,45381,
%U A182984 56674,70502,87453,108077,133259,163762,200747,245378,299261
%N A182984 Total number of parts that are not the smallest part in all partitions of n.
%C A182984 a(n) = sum of 2nd largest part in all partitions of n (if all parts are equal, then we assume that 0 is also a part). Example: a(5) = 6 because the sum of the 2nd largest parts in the partitions [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] is 0 + 1 + 2 + 1 + 1 + 1 + 0 = 6. - _Emeric Deutsch_, Dec 11 2015
%H A182984 Alois P. Heinz, <a href="/A182984/b182984.txt">Table of n, a(n) for n = 0..1000</a>
%F A182984 a(n) = A006128(n) - A092269(n), for n >= 1.
%F A182984 G.f.: g(x) = Sum(Sum(x^{q+i}/(1-x^q), q=i+1..infinity)/Product(1-x^q, q=i..infinity), i=1..infinity). - _Emeric Deutsch_, Nov 14 2015
%F A182984 a(n) = Sum(k*A264402(n,k), k>=1). - _Emeric Deutsch_, Dec 11 2015
%e A182984 a(5) = 6 because the partitions of 5 are [5], [(4),1], [(3),2], [(3),1,1], [(2),(2),1], [(2),1,1,1] and [1,1,1,1,1], containing a total of 6 parts that are not the smallest part (shown between parentheses).
%p A182984 g := sum((sum(x^(q+i)/(1-x^q), q = i+1 .. 80))/(product(1-x^q, q = i .. 80)), i = 1 .. 80): gser := series(g, x = 0,50): seq(coeff(gser, x, n), n = 0 .. 47); # _Emeric Deutsch_, Nov 14 2015
%Y A182984 Cf. A006128, A092269, A116686, A264402.
%K A182984 nonn
%O A182984 0,5
%A A182984 _Omar E. Pol_, Jul 15 2011