cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182995 Sum of parts of the n-th subsection of the head of the last section of the set of partitions of any odd integer >= 2n+1.

This page as a plain text file.
%I A182995 #20 Aug 31 2020 11:41:01
%S A182995 3,7,18,44,82,158,303,507,873,1470,2354,3756,5923,9065,13815,20824,
%T A182995 30853,45365,66210,95415,136696,194414,274057,384136,535219,740559,
%U A182995 1019529,1396212,1901533,2577918,3479291,4673711,6253003,8332767
%N A182995 Sum of parts of the n-th subsection of the head of the last section of the set of partitions of any odd integer >= 2n+1.
%C A182995 The last section of the set of partitions of 2n+1 contains n subsections.
%C A182995 Also first differences of A182737. - Omar E. Pol, Mar 03 2011
%F A182995 a(n) = A138880(2n+1) - A138880(2n-1).
%e A182995 a(5)=82 because the 5th subsection of the head of the last section of any odd integer >= 11 looks like this:
%e A182995 (11 . . . . . . . . . . )
%e A182995 ( 6 . . . . . 5 . . . . )
%e A182995 ( 7 . . . . . . 4 . . . )
%e A182995 ( 8 . . . . . . . 3 . . )
%e A182995 ( 4 . . . 4 . . . 3 . . )
%e A182995 ( 5 . . . . 3 . . 3 . . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 .                  (2 . )
%e A182995 There are 21 parts whose sum is 11+6+5+7+4+8+3+4+4+3+5+3+3+2+2+2+2+2+2+2+2 = 11*6 + 2*8 = 82, so a(5) = 82.
%Y A182995 Cf. A135010, A138880, A182737, A182743, A182983, A182993, A182994.
%K A182995 nonn
%O A182995 1,1
%A A182995 _Omar E. Pol_, Feb 06 2011
%E A182995 a(17) corrected and more terms from Omar E. Pol, Mar 03 2011.
%E A182995 a(12) corrected by _Georg Fischer_, Aug 31 2020