A183031 Decimal expansion of Sum_{j>=1} tau(j)/j^4 = Pi^8/8100.
1, 1, 7, 1, 4, 2, 3, 5, 8, 2, 2, 3, 0, 9, 3, 5, 0, 6, 2, 6, 0, 8, 4, 6, 6, 1, 1, 1, 5, 9, 3, 4, 2, 7, 8, 7, 6, 1, 3, 5, 4, 5, 4, 2, 5, 5, 7, 5, 8, 1, 5, 8, 3, 5, 7, 0, 5, 0, 6, 2, 8, 5, 6, 9, 7, 6, 1, 3, 4, 6, 7, 7, 8, 0, 0, 3, 8, 7, 3, 6, 1, 6, 7, 9, 4
Offset: 1
Examples
1.1714235822309350626084... = 1 + 2/2^4 + 2/3^4 + 3/4^4 + 2/5^4 + 4/6^4 + 2/7^4 + ...
Programs
-
Maple
evalf(Pi^8/8100) ;
-
Mathematica
RealDigits[Zeta[4]^2, 10, 120][[1]] (* Amiram Eldar, May 22 2023 *)
-
PARI
zeta(4)^2 \\ Charles R Greathouse IV, Mar 04 2015
Formula
Equals the Euler product Product_{p prime} (1 + (2*p^s - 1)/(p^s - 1)^2) at s=4, which is the square of A013662.
Comments