cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183042 Least number of knight's moves from (0,0) to the segment of points (0,n), (1,n-1), ..., (n,0) on infinite chessboard.

Original entry on oeis.org

0, 6, 6, 8, 12, 18, 22, 28, 36, 42, 52, 64, 68, 82, 98, 104, 118, 138, 146, 164, 184, 194, 216, 240, 248, 274, 302, 312, 338, 370, 382, 412, 444, 458, 492, 528, 540, 578, 618, 632, 670, 714, 730, 772, 816, 834, 880, 928, 944, 994
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2010

Keywords

Examples

			For n=3, the least number of knight's moves to the points (i.e., squares) (3,0), (2,1), (1,2), (0,3) are 3,1,1,3, respectively, for a total of a(3)=8.
		

Crossrefs

Cf. A065775.

Formula

a(n)=T(n,0)+T(n-1,1)+...+T(0,n), where T is formulated at A065775.
Empirical g.f.: 2*x*(x^13-x^9-3*x^7-x^6-4*x^2-3*x-3) / ((x-1)^3*(x+1)*(x^2+1)*(x^2+x+1)^2). - Colin Barker, May 04 2014