A183042 Least number of knight's moves from (0,0) to the segment of points (0,n), (1,n-1), ..., (n,0) on infinite chessboard.
0, 6, 6, 8, 12, 18, 22, 28, 36, 42, 52, 64, 68, 82, 98, 104, 118, 138, 146, 164, 184, 194, 216, 240, 248, 274, 302, 312, 338, 370, 382, 412, 444, 458, 492, 528, 540, 578, 618, 632, 670, 714, 730, 772, 816, 834, 880, 928, 944, 994
Offset: 0
Keywords
Examples
For n=3, the least number of knight's moves to the points (i.e., squares) (3,0), (2,1), (1,2), (0,3) are 3,1,1,3, respectively, for a total of a(3)=8.
Crossrefs
Cf. A065775.
Formula
a(n)=T(n,0)+T(n-1,1)+...+T(0,n), where T is formulated at A065775.
Empirical g.f.: 2*x*(x^13-x^9-3*x^7-x^6-4*x^2-3*x-3) / ((x-1)^3*(x+1)*(x^2+1)*(x^2+x+1)^2). - Colin Barker, May 04 2014