A183059 Cyclops primes p such that 2p+1 is also a Cyclops prime.
12011, 12041, 13049, 18041, 21011, 22013, 28019, 29021, 29033, 31019, 33023, 37013, 37049, 38039, 42023, 43013, 48029, 1110269, 1120349, 1120481, 1130273, 1130429, 1140143, 1140311, 1140341, 1140383, 1140413, 1140449, 1160129, 1160213, 1160429, 1170173, 1170329, 1170443
Offset: 1
Examples
a(1) = 12011 is in the sequence because 12011 is a Cyclops prime A134809 and 2*12011+1 = 24023 is also a Cyclops prime.
Programs
-
Maple
isA134808 := proc(n) local dgs,ndgs; dgs := convert(n,base,10) ; mdg := (nops(dgs)+1)/2 ; if type(nops(dgs),'even') then false; elif n = 0 then true; else if op(mdg,dgs) <> 0 then false; else if mul(op(k,dgs),k=1..mdg-1) =0 or mul(op(k,dgs),k=mdg+1..nops(dgs)) = 0 then false; else true; end if; end if; end if; end proc: isA134809 := proc(n) isprime(n) and isA134808(n) ; end proc: isA183059 := proc(n) isA134809(n) and isA134809(2*n+1) ; end proc: for n from 0 to 1200000 do if isA183059(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 05 2011
Comments