A183060 Number of "ON" cells at n-th stage in a simple 2-dimensional cellular automaton (see Comments for precise definition).
0, 1, 4, 7, 14, 17, 24, 31, 50, 53, 60, 67, 86, 93, 112, 131, 186, 189, 196, 203, 222, 229, 248, 267, 322, 329, 348, 367, 422, 441, 496, 551, 714, 717, 724, 731, 750, 757, 776, 795, 850, 857, 876, 895, 950, 969, 1024, 1079, 1242, 1249, 1268, 1287
Offset: 0
Keywords
Examples
Illustration of the structure after eight stages in which we label the generations of cells turned ON by consecutive numbers: 8 878 8 6 8 8765678 8 8 4 8 8 878 434 878 8 6 4 2 4 6 8 876543212345678 ................... There are 50 "ON" cells so a(8) = 50.
Links
- JungHwan Min, Table of n, a(n) for n = 0..2500
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 31-32.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
A183060[0] = 0; A183060[n_] := Total[With[{m = n - 1}, CellularAutomaton[{4042387958, 2, {{0, 1}, {-1, 0}, {0, 0}, {1, 0}, {0, -1}}}, {{{1}}, 0}, {{{m}}, -m}]], 2] (* JungHwan Min, Jan 24 2016 *) A183060[0] = 0; A183060[n_] := Total[With[{m = n - 1}, CellularAutomaton[{686, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, {{{m}}, -m}]], 2] (* JungHwan Min, Jan 24 2016 *)
Formula
a(n) = n + (A147562(n) - 1)/2, n >= 1.
a(n) = n + 2*A151920(n-2), n >= 2.
a(2^n) = A076024(n+1). - Nathaniel Johnston, Mar 14 2011
Extensions
Comments edited by Omar E. Pol, Mar 19 2011 at the suggestion of John W. Layman and Franklin T. Adams-Watters
Comments