This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183087 #14 Aug 04 2022 11:00:40 %S A183087 101,103,107,109,307,313,317,401,409,419,439,503,509,523,547,601,607, %T A183087 613,617,619,647,659,701,709,719,727,739,757,769,809,823,827,829,839, %U A183087 857,859,907,919,929,937,947,967,1013,1019,1039,1049,1069,2017,2027,2029 %N A183087 Generalized canyon primes. %C A183087 Primes in A183086. Supersequence of A134971 because the restriction that both cliffs are at same level (first digit equal to the final digit) is dropped here. %C A183087 This sequence is finite because A183086 is. %C A183087 Questions: How many terms are there in this sequence? %C A183087 What is the largest term? %C A183087 There are 24356 terms, the largest of which is 98765432101456789. - _Michael S. Branicky_, Aug 04 2022 %H A183087 Michael S. Branicky, <a href="/A183087/b183087.txt">Table of n, a(n) for n = 1..24356</a> (full sequence) %F A183087 A000040 INTERSECT A183086. %e A183087 Illustration of 751379 as a generalized canyon prime: %e A183087 . . . . . 9 %e A183087 . . . . . . %e A183087 7 . . . 7 . %e A183087 . . . . . . %e A183087 . 5 . . . . %e A183087 . . . . . . %e A183087 . . . 3 . . %e A183087 . . . . . . %e A183087 . . 1 . . . %e A183087 . . . . . . %o A183087 (Python) %o A183087 from sympy import isprime %o A183087 from itertools import chain, combinations as combs %o A183087 ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11))) %o A183087 s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0]) %o A183087 afull = sorted(filter(isprime, (int("".join(map(str, t))) for t in s))) %o A183087 print(afull[:50]) # _Michael S. Branicky_, Aug 04 2022 %Y A183087 Cf. A134971, A167853, A183086. %K A183087 nonn,base,fini,full %O A183087 1,1 %A A183087 _Omar E. Pol_, Jan 19 2011 %E A183087 Missing 601 inserted by _Michael S. Branicky_, Aug 04 2022