This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183091 #37 Aug 31 2023 05:33:53 %S A183091 1,2,3,8,5,6,7,64,27,10,11,24,13,14,15,1024,17,54,19,40,21,22,23,192, %T A183091 125,26,729,56,29,30,31,32768,33,34,35,216,37,38,39,320,41,42,43,88, %U A183091 135,46,47,3072,343,250,51,104,53,1458 %N A183091 a(n) is the product of the divisors p^k of n where p is prime and k >= 1. %C A183091 Product of n-th row of triangle A210208. - _Reinhard Zumkeller_, Mar 18 2012 %H A183091 Reinhard Zumkeller, <a href="/A183091/b183091.txt">Table of n, a(n) for n = 1..10000</a> %F A183091 a(n) = A007955(n) / A183092(n). %F A183091 Multiplicative with a(p^k) = p^(k*(k+1)/2). %F A183091 The Dirichlet g.f. of a(n) / abs(A153038(n)) is Product_{k >= 0} zeta(s+k). - _Álvar Ibeas_, Nov 10 2014 %e A183091 For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1*2*3*4 = 24. %p A183091 A183091 := proc(n) local a,d; a := 1 ;for d in numtheory[divisors](n) minus {1} do if nops( numtheory[factorset](d)) = 1 then a := a*d; end if; end do: a ; end proc: # _R. J. Mathar_, Apr 14 2011 %t A183091 Table[Product[d, {d, Select[Divisors[n], Length[FactorInteger[#]] == 1 &]}], {n,1, 54}] (* _Geoffrey Critzer_, Mar 18 2015 *) %t A183091 f[p_, e_] := p^(e*(e+1)/2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 31 2023 *) %o A183091 (Haskell) %o A183091 a183091 = product . a210208_row -- _Reinhard Zumkeller_, Mar 18 2012 %o A183091 (PARI) a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^binomial(f[i,2]+1,2)) \\ _Charles R Greathouse IV_, Nov 11 2014 %Y A183091 Cf. A007955, A023888, A153038, A183092, A210208. %K A183091 nonn,easy,mult %O A183091 1,2 %A A183091 _Jaroslav Krizek_, Dec 25 2010