cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183110 Period-length of the ultimate periodic behavior of the orbit of a list [1,1,1,...,1] of n 1's under the mapping defined in the comments.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 4, 4, 1, 5, 5, 5, 5, 1, 6, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 1, 8, 8, 8, 8, 8, 8, 8, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1, 13, 13
Offset: 1

Views

Author

John W. Layman, Feb 01 2011

Keywords

Comments

We use the list mapping introduced in A092964, whereby one removes the first term of the list, z(1), and adds 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list.
This is also conjectured to be the length of the longest cycle of pebble-moves among the partitions of n (cf. A201144). - Andrew V. Sutherland

Examples

			Under the indicated mapping the list [1,1,1,1,1,1,1] of seven 1's results in the orbit [1,1,1,1,1,1,1], [2,1,1,1,1,1], [2,2,1,1,1], [3,2,1,1], [3,2,2], [3,3,1], [4,2,1], [3,2,1,1], ... which is clearly periodic with period-length 4, so a(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{pp, x, lpp, m, i}, pp = p; x = pp[[1]]; pp = Delete[pp,1]; lpp = Length[pp]; m = Min[x, lpp]; For[i = 1, i ≤ m, i++, pp[[i]]++]; For[i = 1, i ≤ x - lpp, i++, AppendTo[pp, 1]]; pp]; orb[p_] := Module[{s, v}, v = p; s = {v}; While[! MemberQ[s, v = f[v]], AppendTo[s, v]]; s]; attractor[p_] := Module[{orbp, pos, len, per}, orbp = orb[p]; pos = Flatten[Position[orbp, f[orbp[[-1]]]]][[1]] - 1; (*pos = steps to enter period*) len = Length[orbp] - pos; per = Take[orbp, -len]; Sort[per]]; a = {}; For[n = 1, n ≤ 80, n++, {rn = Table[1, {k, 1, n}]; orbn = orb[rn]; lenorb = Length[orbn]; lenattr = Length[attractor[rn]]; AppendTo[a, lenattr]}]; Print[a];

Formula

It appears, but has not yet been proved, that a(n)=1 if n=t(k) and a(n)=k if t(k-1) < n < t(k) where t(k) is the k-th triangular number t(k) = k*(k+1)/2.