cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183111 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE] pre-colored puzzle.

This page as a plain text file.
%I A183111 #44 Mar 02 2022 13:23:55
%S A183111 0,1,3,9,25,75,223,665,1993,5971,17903,53697,161065,483163,1449439,
%T A183111 4348233,13044585,39133571,117400431,352200881,1056601993,3169805003,
%U A183111 9509413535,28528238329,85584711561,256754129459,770262380399,2310787129121,6932361368937
%N A183111 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE] pre-colored puzzle.
%C A183111 A. The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the sequence is optimal (the sequence presented gives the minimum number of moves to solve the puzzle for the given pre-coloring configurations). Optimal solutions are discussed and their optimality is proved in link 2 listed below.
%C A183111 B. Disk numbering is from largest disk (k = 1) to smallest disk (k = N)
%C A183111 C. The above-listed "original" sequence generates a "partial-sums" sequence - describing the total number of moves required to solve the puzzle.
%C A183111 D. The number of moves of disk k, for large k, is close to (10/11)*3^(k-1) ~ 0.909*3^(k-1). Series designation: P909(k).
%H A183111 Uri Levy, <a href="http://arxiv.org/abs/1003.0225">The Magnetic Tower of Hanoi</a>, Journal of Recreational Mathematics, Volume 35 Number 3 (2006),  2010, pp 173; arXiv:1003.0225 [math.CO], 2010.
%H A183111 Uri Levy, <a href="http://arxiv.org/abs/1011.3843">Magnetic Towers of Hanoi and their Optimal Solutions</a>, arXiv:1011.3843 [math.CO], 2010.
%H A183111 Web applet <a href="http://www.weizmann.ac.il/zemed/davidson_online/mtoh/MTOHeng.html">to play The Magnetic Tower of Hanoi</a>
%H A183111 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-1,-6).
%F A183111 G.f.: -x*(-1+4*x^3+x^2) / ( (3*x-1)*(2*x^3+x^2-1) ).
%F A183111 Recurrence Relations (a(n)=P909(n) as in referenced paper):
%F A183111 a(n) = a(n-2) + a(n-3) + 2*3^(n-2) + 2*3^(n-4) ; n >= 4
%F A183111 Closed-Form Expression:
%F A183111 Define:
%F A183111 λ1 = [1+sqrt(26/27)]^(1/3) +  [1-sqrt(26/27)]^(1/3)
%F A183111 λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
%F A183111 λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
%F A183111 AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
%F A183111 BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
%F A183111 CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
%F A183111 For any n > 0:
%F A183111 a(n) = (10/11)*3^(n-1) + AP* λ1^(n-1) + BP* λ2^(n-1) + CP* λ3^(n-1)
%F A183111 33*a(n) = 10*3^n -3*( A052947(n-2) -A052947(n-1) -4*A052947(n) ). - _R. J. Mathar_, Feb 05 2020
%t A183111 LinearRecurrence[{3,1,-1,-6},{0,1,3,9,25},30] (* _Harvey P. Dale_, Apr 30 2018 *)
%Y A183111 A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi.
%Y A183111 Cf. A183111 - A183125.
%K A183111 nonn,easy
%O A183111 0,3
%A A183111 _Uri Levy_, Dec 25 2010
%E A183111 More terms from _Harvey P. Dale_, Apr 30 2018