cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183115 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.

This page as a plain text file.
%I A183115 #29 Aug 21 2025 07:01:04
%S A183115 0,1,3,7,19,55,159,471,1403,4191,12551,37615,112787,338279,1014703,
%T A183115 3043911,9131435,27393839,82180823,246541407,739622595,2218865335,
%U A183115 6656592255,19969771063,59909304539,179727900415,539183681191,1617551013071,4852652992755,14557958907655,43673876615503
%N A183115 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
%C A183115 The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE],  given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the sequence is optimal (the sequence presented gives the minimum number of moves to solve the puzzle for the given pre-coloring configurations). Optimal solutions are discussed and their optimality is proved in link 2 listed below.
%C A183115 Disk numbering is from largest disk (k = 1) to smallest disk (k = N)
%C A183115 The above-listed "original" sequence generates a "partial-sums" sequence - describing the total number of moves required to solve the puzzle.
%C A183115 Number of moves of disk k, for large k,  is close to (7/11)*3^(k-1) ~ 0.636*3^(k-1). Series designation: P636(k).
%D A183115 Uri Levy, "The Magnetic Tower of Hanoi", Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp. 173.
%H A183115 Uri Levy, <a href="http://arxiv.org/abs/1003.0225">The Magnetic Tower of Hanoi</a>, arXiv:1003.0225 [math.CO], 2010.
%H A183115 Uri Levy, <a href="http://arxiv.org/abs/1011.3843">Magnetic Towers of Hanoi and their Optimal Solutions</a>, arXiv:1011.3843 [math.CO], 2010.
%H A183115 Web applet <a href="http://www.weizmann.ac.il/zemed/davidson_online/mtoh/MTOHeng.html">to play The Magnetic Tower of Hanoi</a> [Broken link]
%F A183115 Recurrence Relations (a(n)=P636(n) as in referenced paper):
%F A183115 P636(n) = P636(n-1) + 2*P909(n-2) + 2*3^(n-3) ; n >= 3
%F A183115 Note:  P909(n-2) refers to the integer sequence described by A183111.
%F A183115 Closed-Form Expression:
%F A183115 Define:
%F A183115 λ1 = [1+sqrt(26/27)]^(1/3) +  [1-sqrt(26/27)]^(1/3)
%F A183115 λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
%F A183115 λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
%F A183115 AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
%F A183115 BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
%F A183115 CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
%F A183115 For n > 0: P636(n) = (7/11)*3^(n-1) + AP*(λ1+1)*λ1^(n-1) + BP*( λ2+1)*λ2^(n-1) + CP*(λ3+1)* λ3^(n-1)
%F A183115 G.f.: x*(1-3*x^2-4*x^3)/((1-3*x)*(1-x^2-2*x^3)). - _Colin Barker_, Jan 12 2012
%t A183115 L1 = Root[-2 - # + #^3&, 1];
%t A183115 L2 = Root[-2 - # + #^3&, 3];
%t A183115 L3 = Root[-2 - # + #^3&, 2];
%t A183115 AP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 1];
%t A183115 BP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 3];
%t A183115 CP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 2];
%t A183115 a[0] = 0;
%t A183115 a[n_] := (7/11) 3^(n-1) + AP (L1+1) L1^(n-1) + BP (L2+1) L2^(n-1) + CP (L3+1) L3^(n-1);
%t A183115 Table[a[n] // Round, {n, 0, 30}] (* _Jean-François Alcover_, Dec 03 2018 *)
%Y A183115 A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
%Y A183115 A183111 through A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
%K A183115 nonn
%O A183115 0,3
%A A183115 _Uri Levy_, Dec 31 2010
%E A183115 More terms from _Jean-François Alcover_, Dec 03 2018