A183116 Magnetic Tower of Hanoi, total number of moves, optimally solving the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
0, 1, 4, 11, 30, 85, 244, 715, 2118, 6309, 18860, 56475, 169262, 507541, 1522244, 4566155, 13697590, 41091429, 123272252, 369813659, 1109436254
Offset: 0
Keywords
References
- "The Magnetic Tower of Hanoi", Uri Levy, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- Uri Levy, The Magnetic Tower of Hanoi, arxiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, Web Applet. [Broken link]
Crossrefs
A183115 is an "original" sequence describing the number of moves of disk number k, optimally solving the pre-colored puzzle at hand. The integer sequence listed above is the partial sums of the A183115 original sequence.
Programs
-
Mathematica
L1 = Root[-2 - # + #^3&, 1]; L2 = Root[-2 - # + #^3&, 3]; L3 = Root[-2 - # + #^3&, 2]; AP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 1]; BP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 3]; CP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 2]; (* b = A183115 *) b[0] = 0; b[n_] := (7/11) 3^(n-1) + AP (L1+1) L1^(n-1) + BP (L2+1) L2^(n-1) + CP (L3+1) L3^(n-1) // Round; Array[b, 21, 0] // Accumulate (* Jean-François Alcover, Jan 30 2019 *)
Formula
G.f. appears to be (-4*x^3-3*x^2+1)/(-6*x^5+5*x^4+2*x^3+2*x^2-4*x+1).
Recurrence Relations (a(n)=S636(n) as in referenced paper):
S636(n) = S636(n-1) + 2*S909(n-2) + 3^(n-2) + 2 ; n >= 2 ; S909(0) = 0
Note: S909(n-2) refers to the integer sequence described by A183112.
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AS = [(7/11)* λ2* λ3 - (10/11)*(λ2 + λ3) + (19/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BS = [(7/11)* λ1* λ3 - (10/11)*(λ1 + λ3) + (19/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CS = [(7/11)* λ1* λ2 - (10/11)*(λ1 + λ2) + (19/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For n > 0:
S636(n) = (7/22)*3^n + AS*(λ1 + 1)*λ1^(n-1) + BS*(λ2 + 1)*λ2^(n-1) + CS*(λ3 + 1)*λ3^(n-1) - (3/2)
Comments