cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183116 Magnetic Tower of Hanoi, total number of moves, optimally solving the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.

Original entry on oeis.org

0, 1, 4, 11, 30, 85, 244, 715, 2118, 6309, 18860, 56475, 169262, 507541, 1522244, 4566155, 13697590, 41091429, 123272252, 369813659, 1109436254
Offset: 0

Views

Author

Uri Levy, Dec 31 2010

Keywords

Comments

The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the sequence is optimal (the sequence presented gives the minimum number of moves to solve the puzzle for the given pre-coloring configurations). Optimal solutions are discussed and their optimality is proved in link 2 listed below.
Number of moves to solve the given puzzle, for large N, is close to 0.5*(7/11)*3^N ~ 0.5*0.636*3^(N). Series designation: S636(N).

References

  • "The Magnetic Tower of Hanoi", Uri Levy, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.

Crossrefs

A183115 is an "original" sequence describing the number of moves of disk number k, optimally solving the pre-colored puzzle at hand. The integer sequence listed above is the partial sums of the A183115 original sequence.
A003462 "Partial sums of A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.

Programs

  • Mathematica
    L1 = Root[-2 - # + #^3&, 1];
    L2 = Root[-2 - # + #^3&, 3];
    L3 = Root[-2 - # + #^3&, 2];
    AP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 1];
    BP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 3];
    CP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 2];
    (* b = A183115 *) b[0] = 0; b[n_] := (7/11) 3^(n-1) + AP (L1+1) L1^(n-1) + BP (L2+1) L2^(n-1) + CP (L3+1) L3^(n-1) // Round;
    Array[b, 21, 0] // Accumulate (* Jean-François Alcover, Jan 30 2019 *)

Formula

G.f. appears to be (-4*x^3-3*x^2+1)/(-6*x^5+5*x^4+2*x^3+2*x^2-4*x+1).
Recurrence Relations (a(n)=S636(n) as in referenced paper):
S636(n) = S636(n-1) + 2*S909(n-2) + 3^(n-2) + 2 ; n >= 2 ; S909(0) = 0
Note: S909(n-2) refers to the integer sequence described by A183112.
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AS = [(7/11)* λ2* λ3 - (10/11)*(λ2 + λ3) + (19/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BS = [(7/11)* λ1* λ3 - (10/11)*(λ1 + λ3) + (19/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CS = [(7/11)* λ1* λ2 - (10/11)*(λ1 + λ2) + (19/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For n > 0:
S636(n) = (7/22)*3^n + AS*(λ1 + 1)*λ1^(n-1) + BS*(λ2 + 1)*λ2^(n-1) + CS*(λ3 + 1)*λ3^(n-1) - (3/2)