A183117 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
0, 1, 3, 7, 19, 53, 153, 451, 1339, 3997, 11961, 35835, 107435, 322197, 966425, 2899027, 8696699, 26089517, 78267673, 234801675, 704402987, 2113205861, 6339612857, 19018831395, 57056483259, 171169433149, 513508274169, 1540524784027, 4621574293547, 13864722791605, 41594168239321
Offset: 0
Keywords
References
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp. 173.
Links
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet to play The Magnetic Tower of Hanoi [Broken link]
Crossrefs
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
Programs
-
Mathematica
L1 = Root[-2 - # + #^3&, 1]; L2 = Root[-2 - # + #^3&, 3]; L3 = Root[-2 - # + #^3&, 2]; AP = Root[-2 - 9# - 52 #^2 + 572 #^3&, 1]; BP = Root[-2 - 9# - 52 #^2 + 572 #^3&, 3]; CP = Root[-2 - 9# - 52 #^2 + 572 #^3&, 2]; a[0] = 0; a[n_] := (1/2) AP (L1+1)^2 L1^(n-1) + (1/2) BP (L2+1)^2 L2^(n-1) + (1/2) CP (L3+1)^2 L3^(n-1) + (20 3^(n-1))/33; Table[a[n] // Round, {n, 0, 30}] (* Jean-François Alcover, Dec 03 2018 *)
Formula
G.f. appears to be -x*(1+x)*(2*x^3+2*x^2+x-1)/((3*x-1)*(2*x^3+x^2-1)) with a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 6*a(n-4) for n > 5. - Joerg Arndt, Jan 03 2011
Recurrence Relations (a(n)=P606(n) as in referenced paper):
P606(n) = P636(n-1) + P636(n-2) + P909(n-2) + 2*3^(n-3) ; n >= 3.
Note: P636(n) and P909(n) refer to the integer sequences described by A183115 and A183111 respectively.
Closed-Form Expression:
Define:
λ1 = (1+sqrt(26/27))^(1/3) + (1-sqrt(26/27))^(1/3)
λ2 = -0.5*λ1 + 0.5*i*((sqrt(27) + sqrt(26))^(1/3) - (sqrt(27) - sqrt(26))^(1/3))
λ3 = -0.5*λ1 - 0.5*i*((sqrt(27) + sqrt(26))^(1/3) - (sqrt(27) - sqrt(26))^(1/3))
AP = ((1/11)*λ2*λ3 - (3/11)*(λ2 + λ3) + (9/11))/((λ2 - λ1)*(λ3 - λ1))
BP = ((1/11)*λ1*λ3 - (3/11)*(λ1 + λ3) + (9/11))/((λ1 - λ2)*(λ3 - λ2))
CP = ((1/11)*λ1*λ2 - (3/11)*(λ1 + λ2) + (9/11))/((λ2 - λ3)*(λ1 - λ3))
For n > 1:
P606(n) = (20/33)*3^(n-1) + 0.5*AP*((λ1+1)^2)*λ1^(n-1) + 0.5*BP*((λ2+1)^2)*λ2^(n-1) + 0.5*CP*(λ3+1)^2)*λ3^(n-1).
Comments