A183126 Toothpick sequence with toothpicks connected by their endpoints.
0, 1, 7, 23, 39, 79, 95, 135, 175, 287, 303, 343, 383, 495, 535, 647, 759, 1087, 1103, 1143, 1183, 1295, 1335, 1447, 1559, 1887, 1927, 2039, 2151, 2479, 2591, 2919, 3247, 4223, 4239, 4279, 4319, 4431, 4471, 4583, 4695
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 31.
- John W. Layman, Graphs of the toothpick configuration for generations 1-15
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
Mathematica
a[n_] := 7 + 4 (n - 2 + Sum[3^DigitCount[k, 2, 1], {k, n - 2}]); a[0] = 0; a[1] = 1; Array[a, 41, 0] (* Michael De Vlieger, Nov 02 2022 *)
Formula
From Nathaniel Johnston, Apr 06 2011: (Start)
a(n) = 7 + 4*(n-2 + Sum_{k=1..n-2}3^A000120(k)), n >= 2.
a(n) = 7 + 4*(n-2 + 3*A151920(n-3)), n >= 3.
a(1 + 2^n) = 2^(n+2)+4^(n+1)-1, n >= 0.
(End)
Extensions
Terms a(0)-a(10) confirmed and terms a(11)-a(35) added by John W. Layman, Mar 30 2011
a(36)-a(40) from Nathaniel Johnston, Apr 06 2011
Comments