This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183132 #39 Feb 16 2025 08:33:13 %S A183132 10,5,36,858,234,5577,1521,3549,8281,910,100,50,25,180,3388,924,252, %T A183132 6006,1638,39039,10647,24843,57967,6370,700,300,7150,1950,46475,12675, %U A183132 29575,3250,360,6776,1848,504,12012,3276,78078,21294,507507,138411,322959,753571 %N A183132 Successive integers produced by Conway's PRIMEGAME using Kilminster's Fractran program with only nine fractions. %C A183132 The exponents of exact powers of 10 in this sequence are 1, followed by the successive primes (A008578). %D A183132 D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21. %H A183132 Alois P. Heinz, <a href="/A183132/b183132.txt">Table of n, a(n) for n = 1..10547</a> %H A183132 J. H. Conway, <a href="http://dx.doi.org/10.1007/978-1-4612-4808-8_2">FRACTRAN: a simple universal programming language for arithmetic</a>, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26. %H A183132 Esolang wiki, <a href="http://www.esolangs.org/wiki/Fractran">Fractran</a> %H A183132 Chaim Goodman-Strauss, <a href="http://www.ams.org/notices/201003/rtx100300343p.pdf">Can’t Decide? Undecide!</a>, Notices of the AMS, Volume 57, Number 3, pp. 343-356, March 2010. %H A183132 R. K. Guy, <a href="http://www.jstor.org/stable/2690263">Conway's prime producing machine</a>, Math. Mag. 56 (1983), no. 1, 26-33. %H A183132 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FRACTRAN.html">FRACTRAN</a>. %H A183132 Wikipedia, <a href="https://en.wikipedia.org/wiki/FRACTRAN">FRACTRAN</a>. %p A183132 l:= [3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5]: %p A183132 a:= proc(n) option remember; %p A183132 global l; %p A183132 local p, k; %p A183132 if n=1 then 10 %p A183132 else p:= a(n-1); %p A183132 for k while not type(p*l[k], integer) %p A183132 do od; p*l[k] %p A183132 fi %p A183132 end: %p A183132 seq(a(n), n=1..50); %t A183132 l = {3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5}; %t A183132 a[n_] := a[n] = Module[{p, k}, If[n == 1, 10, p = a[n - 1]; For[k = 1, !IntegerQ[p*l[[k]]], k++]; p*l[[k]]]]; %t A183132 Array[a, 50] (* _Jean-François Alcover_, May 28 2018, from Maple *) %o A183132 (Python) %o A183132 from fractions import Fraction %o A183132 nums = [ 3, 847, 143, 7, 10, 3, 36, 1, 36] %o A183132 dens = [11, 45, 6, 3, 91, 7, 325, 2, 5] %o A183132 PRIMEGAME = [Fraction(num, den) for num, den in zip(nums, dens)] %o A183132 def succ(n, program): %o A183132 for i in range(len(program)): %o A183132 if (n*program[i]).denominator == 1: return (n*program[i]).numerator %o A183132 def orbit(start, program, steps): %o A183132 orb = [start] %o A183132 for s in range(1, steps): orb.append(succ(orb[-1], program)) %o A183132 return orb %o A183132 print(orbit(10, PRIMEGAME, steps=44)) # _Michael S. Branicky_, Oct 05 2021 %Y A183132 Cf. A183133, A008578, A007542, A007546, A007547. %K A183132 easy,look,nonn %O A183132 1,1 %A A183132 _Alois P. Heinz_, Dec 26 2010