cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183136 a(n) = [1/r]+[2/r]+...+[n/r], where r = golden ratio = (1+sqrt(5))/2 and []=floor.

This page as a plain text file.
%I A183136 #26 Jun 21 2025 11:17:21
%S A183136 0,1,2,4,7,10,14,18,23,29,35,42,50,58,67,76,86,97,108,120,132,145,159,
%T A183136 173,188,204,220,237,254,272,291,310,330,351,372,394,416,439,463,487,
%U A183136 512,537,563,590,617,645,674,703,733,763,794,826,858
%N A183136 a(n) = [1/r]+[2/r]+...+[n/r], where r = golden ratio = (1+sqrt(5))/2 and []=floor.
%C A183136 a(n) + A183137(n) = A000217(n) (the triangular numbers).
%H A183136 Paolo Xausa, <a href="/A183136/b183136.txt">Table of n, a(n) for n = 1..10000</a>
%H A183136 Hector Zenil, N. Kiani, and J. Tegner, <a href="https://arxiv.org/abs/1608.05972">Low Algorithmic Complexity Entropy-deceiving Graphs</a>, arXiv preprint arXiv:1608.05972 [cs.IT], 2016-2017.
%F A183136 a(n) = [1/r]+[2/r]+...+[n/r], where r = golden ratio = (1+sqrt(5))/2 and []=floor.
%e A183136 The terms [k/r] are given by A060143 (and A005206): 0,1,1,2,3,3,4,4,5,6,6,7,8,8,...
%t A183136 Accumulate[Floor[Range[100]/GoldenRatio]] (* _Paolo Xausa_, Jun 20 2025 *)
%o A183136 (PARI) default(realprecision,100); r=(1+sqrt(5))/2; for(n=1,99, print1(sum(k=1,n,floor(k/r)), ", "))
%o A183136 (Python)
%o A183136 from math import isqrt
%o A183136 def A183136(n): return sum(isqrt(5*i**2)-i>>1 for i in range(1,n+1)) # _Chai Wah Wu_, Jun 20 2025
%Y A183136 Cf. A183137, A000217, A005206, A060143, A060144.
%K A183136 nonn
%O A183136 1,3
%A A183136 _Clark Kimberling_, Dec 26 2010