A183153 T(n,k) is the number of order-preserving partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|).
1, 1, 1, 1, 4, 1, 1, 9, 5, 1, 1, 16, 14, 6, 1, 1, 25, 30, 20, 7, 1, 1, 36, 55, 50, 27, 8, 1, 1, 49, 91, 105, 77, 35, 9, 1, 1, 64, 140, 196, 182, 112, 44, 10, 1, 1, 81, 204, 336, 378, 294, 156, 54, 11, 1, 1, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 1, 121, 385, 825, 1254, 1386, 1122, 660
Offset: 0
Examples
T(3,2)=5 because there are exactly 5 order-preserving partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,3); (2,3)-->(1,2); (2,3)-->(2,3); (1,3)-->(1,3), the mappings are coordinate-wise. Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 9, 5, 1; 1, 16, 14, 6, 1; 1, 25, 30, 20, 7, 1; 1, 36, 55, 50, 27, 8, 1; 1, 49, 91, 105, 77, 35, 9, 1;
Links
- R. Kehinde, A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.0049
Programs
-
PARI
T(n,k)=if(k==0,1, (2*n-k+1)*binomial(n,k)/(k+1)); for(n=0,17,for(k=0,n,print1(T(n,k),", ")))
Formula
T(n,0)=1. T(n,k)=(2*n-k+1)*C(n,k)/(k+1) if k>0.
Comments