A183154 T(n,k) is the number of order-preserving partial isometries (of an n-chain) of fixed k (fix of alpha is the number of fixed points of alpha).
1, 1, 1, 3, 2, 1, 9, 3, 3, 1, 23, 4, 6, 4, 1, 53, 5, 10, 10, 5, 1, 115, 6, 15, 20, 15, 6, 1, 241, 7, 21, 35, 35, 21, 7, 1, 495, 8, 28, 56, 70, 56, 28, 8, 1, 1005, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2027, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
Offset: 0
Examples
T (4,2) = 6 because there are exactly 6 order-preserving partial isometries (on a 4-chain) of fix 2, namely: (1,2)-->(1,2); (2,3)-->(2,3); (3,4)-->(3,4); (1,3)-->(1,3); (2,4)-->(2,4); (1,4)-->(1,4) - the mappings are coordinate-wise. Triangle starts as: 1; 1, 1; 3, 2, 1; 9, 3, 3, 1; 23, 4, 6, 4, 1; 53, 5, 10, 10, 5, 1; 115, 6, 15, 20, 15, 6, 1;
Links
- R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.2558 [math.GR], 2011.
Programs
-
Maple
A183155 := proc(n) 2^(n+1)-2*n-1 ; end proc: A183154 := proc(n,k) if k =0 then A183155(n); else binomial(n,k) ; end if; end proc: # R. J. Mathar, Jan 06 2011
-
Mathematica
T[n_, k_] := If[k == 0, 2^(n + 1) - 2n - 1, Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2018 *)
-
PARI
A183155(n)=2^(n+1) - (2*n+1); T(n,k)=if(k==0, A183155(n), binomial(n,k)); for(n=0,17,for(k=0,n,print1(T(n,k),", "));print()) \\ Joerg Arndt, Dec 30 2010
Formula
T(n,0) = A183155(n) and T(n,k) = binomial(n,k) if k > 0.