cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183156 The number T(n) of isometries of all subspaces of the finite metric space {1,2,...,n} (as a subspace of the reals with the Euclidean metric).

This page as a plain text file.
%I A183156 #46 Feb 16 2025 08:33:13
%S A183156 1,2,7,22,59,142,319,686,1435,2950,5999,12118,24379,48926,98047,
%T A183156 196318,392891,786070,1572463,3145286,6290971,12582382,25165247,
%U A183156 50331022,100662619,201325862,402652399,805305526,1610611835,3221224510,6442449919,12884900798
%N A183156 The number T(n) of isometries of all subspaces of the finite metric space {1,2,...,n} (as a subspace of the reals with the Euclidean metric).
%C A183156 Also the number of (not necessarily maximal) cliques in the n X n bishop graph. - _Eric W. Weisstein_, Jun 04 2017
%H A183156 Vincenzo Librandi, <a href="/A183156/b183156.txt">Table of n, a(n) for n = 0..1000</a>
%H A183156 R. Kehinde and A. Umar, <a href="http://arxiv.org/abs/1101.2558">On the semigroup of partial isometries of a finite chain</a>, arXiv:1101.2558 [math.GR], 2011.
%H A183156 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a>
%H A183156 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Clique.html">Clique</a>
%H A183156 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,7,-2).
%F A183156 T(n) = 3*2^(n+1) - (n+2)^2 - 1, (n >= 0).
%F A183156 G.f.: (1 - 3*x + 6*x^2 - 2*x^3) / ( (2*x - 1)*(x - 1)^3 ). - _R. J. Mathar_, Jul 03 2011
%F A183156 a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - _Eric W. Weisstein_, Nov 29 2017
%F A183156 a(n) = A295909(n) + A295910(n) for n > 1. - _Eric W. Weisstein_, Nov 29 2017
%F A183156 a(n) = 2*a(n-1) + n^2 - 1. - _Kritsada Moomuang_, Oct 25 2019
%e A183156 T(2) = 7 because there are exactly 7 partial isometries (on a 2-chain), namely: empty map; 1-->1; 1-->2; 2-->1; 2-->2; (1,2)-->(1,2); (1,2)-->(2,1) - the mappings are coordinate-wise.
%t A183156 LinearRecurrence[{5, -9, 7, -2}, {1, 2, 7, 22}, 40] (* _Vincenzo Librandi_, Oct 11 2017 *)
%t A183156 Table[3 2^(n + 1) - (n + 2)^2 - 1, {n, 0, 30}] (* _Vincenzo Librandi_, Oct 11 2017 *)
%t A183156 LinearRecurrence[{5, -9, 7, -2}, {2, 7, 22, 59}, {0, 20}] (* _Eric W. Weisstein_, Nov 29 2017 *)
%t A183156 CoefficientList[Series[(1 - 3 x + 6 x^2 - 2 x^3)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x] (* _Eric W. Weisstein_, Nov 29 2017 *)
%o A183156 (PARI) for(n=0,33,print1(3*(2^(n+1))-(n+2)^2-1,", "))
%o A183156 (Magma) [3*2^(n+1)-(n+2)^2-1: n in [0..33]]; // _Vincenzo Librandi_, Oct 11 2017
%Y A183156 Row sums of triangles A183157, A183158.
%Y A183156 Cf. A295909 (cliques in the n X n black bishop graph).
%Y A183156 Cf. A295910 (cliques in the n X n white bishop graph).
%K A183156 nonn
%O A183156 0,2
%A A183156 _Abdullahi Umar_, Dec 28 2010
%E A183156 Renamed the sequence using more standard and widely-used terminology, _James Mitchell_, May 19 2012