This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183157 #23 Feb 16 2025 08:33:13 %S A183157 1,1,1,1,4,2,1,9,10,2,1,16,28,12,2,1,25,60,40,14,2,1,36,110,100,54,16, %T A183157 2,1,49,182,210,154,70,18,2,1,64,280,392,364,224,88,20,2,1,81,408,672, %U A183157 756,588,312,108,22,2,1,100,570,1080,1428,1344,900,420,130,24,2 %N A183157 Triangle read by rows: T(n,k) is the number of partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|). %C A183157 Rows also give the coefficients of the clique polynomial of the n X n bishop graph. - _Eric W. Weisstein_, Jun 04 2017 %H A183157 R. Kehinde and A. Umar, <a href="http://arxiv.org/abs/1101.2558">On the semigroup of partial isometries of a finite chain</a>, arXiv:1101.2558 [math.GR], 2011. %H A183157 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a> %H A183157 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CliquePolynomial.html">Clique Polynomial</a> %F A183157 T(n,0)=1, T(n,1) = n^2 and T(n,k)=2*(2*n-k+1)*binomial(n,k)/(k+1), k > 1. %e A183157 T (3,2) = 10 because there are exactly 10 partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,1); (1,2)-->(2,3); (1,2)-->(3,2); (2,3)-->(1,2); (2,3)-->(2,1); (2,3)-->(2,3); (2,3)-->(3,2); (1,3)-->(1,3); (1,3)-->(3,1) - the mappings are coordinate-wise. %e A183157 The triangle starts %e A183157 1; %e A183157 1, 1; %e A183157 1, 4, 2; %e A183157 1, 9, 10, 2; %e A183157 1, 16, 28, 12, 2; %e A183157 1, 25, 60, 40, 14, 2; %e A183157 1, 36, 110, 100, 54, 16, 2; %e A183157 1, 49, 182, 210, 154, 70, 18, 2; %e A183157 1, 64, 280, 392, 364, 224, 88, 20, 2; %e A183157 1, 81, 408, 672, 756, 588, 312, 108, 22, 2; %e A183157 1, 100, 570, 1080, 1428, 1344, 900, 420, 130, 24, 2; %p A183157 A183157 := proc(n,k) if k =0 then 1; elif k = 1 then n^2 ; else 2*(2*n-k+1)*binomial(n,k)/(k+1) ; end if; end proc: # R. J. Mathar, Jan 06 2011 %t A183157 T[_, 0] = 1; T[n_, 1] := n^2; T[n_, k_] := 2*(2*n - k + 1)*Binomial[n, k] / (k + 1); %t A183157 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 25 2017 *) %Y A183157 Cf. A183156 (row sums), A006331 (k=2), A008911 (k=3), A067056 (k=4). %K A183157 nonn,tabl %O A183157 0,5 %A A183157 _Abdullahi Umar_, Dec 28 2010