cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183158 T(n,k) is the number of partial isometries of an n-chain of fix k (fix of alpha is the number of fixed points of alpha).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 12, 6, 3, 1, 38, 10, 6, 4, 1, 90, 26, 10, 10, 5, 1, 220, 42, 15, 20, 15, 6, 1, 460, 106, 21, 35, 35, 21, 7, 1, 1018, 170, 28, 56, 70, 56, 28, 8, 1, 2022, 426, 36, 84, 126, 126, 84, 36, 9, 1, 4304, 682, 45, 120, 210, 252, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Abdullahi Umar, Dec 28 2010

Keywords

Examples

			T (4,2) = 6 because there are exactly 6 partial isometries (on a 4-chain) of fix 2, namely: (1,2)-->(1,2); (2,3)-->(2,3); (3,4)-->(3,4); (1,3)-->(1,3); (2,4)-->(2,4); (1,4)-->(1,4) - the mappings are coordinate-wise.
...1.
...1....1.
...4....2....1.
..12....6....3....1.
..38...10....6....4....1.
..90...26...10...10....5....1.
.220...42...15...20...15....6....1.
.460..106...21...35...35...21....7....1.
1018..170...28...56...70...56...28....8....1.
2022..426...36...84..126..126...84...36....9....1.
4304..682...45..120..210..252..210..120...45...10....1.
		

Crossrefs

Cf. A183156 (row sums).

Programs

  • Maple
    A183159 := proc(n) nh := floor(n/2) ; if type(n,'even') then 13*4^nh-12*nh^2-18*nh-10; else 25*4^nh-12*nh^2-30*nh-22; end if; %/3 ; end proc:
    A061547 := proc(n) 3*2^n/8 +(-2)^n/24 - 2/3; end proc:
    A183158 := proc(n,k) if k = 0 then A183159(n) ; elif k = 1 then A061547(n+1) ; else binomial(n,k) ; end if; end proc: # R. J. Mathar, Jan 06 2011
  • Mathematica
    T[n_, 0] := (51*2^n + (-2)^n - 40)/12 - n*(n + 3);
    T[n_, 1] := (9*2^n + (-1)^(n+1)*2^n - 8)/12;
    T[n_, k_] := Binomial[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *)

Formula

T(n,0)= A183159(n). T(n,1)=A061547(n+1). T(n,k)=binomial(n,k), k > 1.