cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183182 Numbers k such that (7*10^(2*k+1) + 9*10^k - 7)/9 is prime.

This page as a plain text file.
%I A183182 #30 Aug 03 2024 18:58:16
%S A183182 1,3,39,54,168,240,5328,6159,24675,52227,113887
%N A183182 Numbers k such that (7*10^(2*k+1) + 9*10^k - 7)/9 is prime.
%D A183182 C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
%H A183182 Patrick De Geest, World!Of Numbers, <a href="http://www.worldofnumbers.com/wing.htm#pwp787">Palindromic Wing Primes (PWP's)</a>.
%H A183182 Makoto Kamada, <a href="https://stdkmd.net/nrr/7/77877.htm#prime">Prime numbers of the form 77...77877...77</a>.
%H A183182 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F A183182 a(n) = (A077793(n) - 1)/2.
%t A183182 Do[If[PrimeQ[(7*10^(2n + 1) + 9*10^n - 7)/9], Print[n]], {n, 3000}]
%o A183182 (PARI) is(n)=ispseudoprime((7*10^(2*n+1)+9*10^n-7)/9) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y A183182 Cf. A004023, A077775-A077798, A107123-A107127, A107648, A107649, A115073, A183174-A183187.
%K A183182 nonn,more,base
%O A183182 1,2
%A A183182 _Ray Chandler_, Dec 28 2010
%E A183182 a(9) from _Robert Price_, Oct 07 2023
%E A183182 a(10) from _Robert Price_, Oct 30 2023
%E A183182 a(11) from _Robert Price_, Aug 03 2024