cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183189 Triangle T(n,k), read by rows, given by (2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A183189 #13 Oct 16 2024 06:02:43
%S A183189 1,2,0,6,1,0,18,5,0,0,54,21,1,0,0,162,81,8,0,0,0,486,297,45,1,0,0,0,
%T A183189 1458,1053,216,11,0,0,0,0,4374,3645,945,78,1,0,0,0,0,13122,12393,3888,
%U A183189 450,14,0,0,0,0,0
%N A183189 Triangle T(n,k), read by rows, given by (2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%C A183189 Riordan array ((1-x)/(1-3x), x^2/(1-3x)).
%C A183189 A skewed version of triangular array in A193723.
%C A183189 A202209*A007318 as infinite lower triangular matrices.
%F A183189 G.f.: (1-x)/(1-3*x-y*x^2).
%F A183189 T(n,k) = Sum_{j, j>=0} T(n-2-j,k-1)*3^j.
%F A183189 T(n,k) = 3*T(n-1,k) + T(n-2,k-1).
%F A183189 Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5 respectively.
%e A183189 Triangle begins:
%e A183189   1
%e A183189   2, 0
%e A183189   6, 1, 0
%e A183189   18, 5, 0, 0
%e A183189   54, 21, 1, 0, 0
%e A183189   162, 81, 8, 0, 0, 0
%e A183189   486, 297, 45, 1, 0, 0, 0
%Y A183189 Cf. A000244, A025192, A081038, A183188 (antidiagonal sums).
%K A183189 nonn,tabl
%O A183189 0,2
%A A183189 _Philippe Deléham_, Dec 14 2011