This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183202 #10 Mar 29 2025 18:16:03 %S A183202 1,1,1,2,1,2,3,3,3,5,4,6,10,9,14,5,10,22,34,29,43,6,15,40,84,122,100, %T A183202 143,7,21,65,169,334,463,367,510,8,28,98,300,738,1390,1851,1426,1936, %U A183202 9,36,140,489,1426,3345,6043,7767,5839,7775,10,45,192,749,2510,6990,15735 %N A183202 Triangle, read by rows, where T(n,k) equals the sum of (n-k) terms in row n of triangle A131338 starting at position nk - k(k-1)/2, with the main diagonal formed from the row sums. %e A183202 Triangle begins: %e A183202 1; %e A183202 1,1; %e A183202 2,1,2; %e A183202 3,3,3,5; %e A183202 4,6,10,9,14; %e A183202 5,10,22,34,29,43; %e A183202 6,15,40,84,122,100,143; %e A183202 7,21,65,169,334,463,367,510; %e A183202 8,28,98,300,738,1390,1851,1426,1936; %e A183202 9,36,140,489,1426,3345,6043,7767,5839,7775; %e A183202 10,45,192,749,2510,6990,15735,27374,34097,25094,32869; ... %e A183202 The rows are derived from triangle A131338 by summing terms in the following manner: %e A183202 (1); %e A183202 (1),(1); %e A183202 (1+1),(1),(2); %e A183202 (1+1+1),(1+2),(3),(5); %e A183202 (1+1+1+1),(1+2+3),(4+6),(9),(14); %e A183202 (1+1+1+1+1),(1+2+3+4),(5+7+10),(14+20),(29),(43); %e A183202 (1+1+1+1+1+1),(1+2+3+4+5),(6+8+11+15),(20+27+37),(51+71),(100),(143); ... %e A183202 where row n of triangle A131338 consists of n '1's followed by the partial sums of the prior row. %o A183202 (PARI) {A131338(n, k)=if(k>n*(n+1)/2||k<0,0,if(k<=n,1,sum(i=0, k-n,A131338(n-1,i))))} %o A183202 {T(n,k)=if(n==k,A131338(n,n*(n+1)/2),sum(j=n*k-k*(k-1)/2,n*k-k*(k-1)/2+n-k-1,A131338(n,j)))} %Y A183202 Cf. A131338, A098568, A098569 (row sums), A183203 (antidiagonal sums). %K A183202 tabl,nonn %O A183202 0,4 %A A183202 _Paul D. Hanna_, Dec 30 2010