cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183207 Termwise products of the natural numbers and odd integers repeated.

This page as a plain text file.
%I A183207 #54 Jul 07 2024 07:58:29
%S A183207 1,2,9,12,25,30,49,56,81,90,121,132,169,182,225,240,289,306,361,380,
%T A183207 441,462,529,552,625,650,729,756,841,870,961,992,1089,1122,1225,1260,
%U A183207 1369,1406,1521,1560,1681,1722,1849,1892,2025
%N A183207 Termwise products of the natural numbers and odd integers repeated.
%C A183207 There is a chessboard of n^2 squares. A pawn is standing on the lower left corner of the chessboard O (0,0) and its primary goal is to reach the upper right corner of the  chessboard N (n,n). The only moves allowed are diagonal shortcuts through squares. Once a square is crossed it is destroyed so that it is impossible to cross again. The secondary goal of the pawn on its way to N is to destroy as many squares as possible. a(n) is the maximum possible number of destroyed squares, provided the pawn has reached its primary goal. - _Ivan N. Ianakiev_, Feb 23 2014
%C A183207 The sequence gives the number of curved edges created from circle intersections when a circle of radius r is drawn around each of n equally spaced points on the circumference of a circle of radius r. The number of regions in these constructions is A093005(n) and the number of vertices is A370980(n). See the attached images. - _Scott R. Shannon_, Jul 07 2024
%H A183207 Vincenzo Librandi, <a href="/A183207/b183207.txt">Table of n, a(n) for n = 1..1000</a>
%H A183207 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%H A183207 Scott R. Shannon, <a href="/A183207/a183207.jpg">Image for n = 3</a>. In this and other images the center of each circle of shown as a white dot.
%H A183207 Scott R. Shannon, <a href="/A183207/a183207_1.jpg">Image for n = 4</a>.
%H A183207 Scott R. Shannon, <a href="/A183207/a183207_2.jpg">Image for n = 5</a>.
%H A183207 Scott R. Shannon, <a href="/A183207/a183207_3.jpg">Image for n = 8</a>.
%F A183207 Termwise products of (1, 2, 3, 4, 5, 6, 7, 8...) and (1, 1, 3, 3, 5, 5, 7, 7,...).
%F A183207 From _R. J. Mathar_, Feb 12 2011: (Start)
%F A183207 G.f.: x*( -1-x-5*x^2-x^3 ) / ( (1+x)^2*(x-1)^3 ).
%F A183207 a(n) = n^2-n*(1+(-1)^n)/2. (End)
%F A183207 Sum_{n>=1} 1/a(n) = Pi^2/8 + log(2). - _Amiram Eldar_, Mar 15 2024
%F A183207 a(n) = A093005(n) + A370980(n) - 1, by Euler's formula. - _Scott R. Shannon_, Jul 07 2024
%e A183207 a(4) = 4*3 = 12.
%t A183207 a[n_] := n (2 Floor[(n - 1)/2] + 1); Array[a, 45] (* _Robert G. Wilson v_, Feb 11 2011 *)
%t A183207 CoefficientList[Series[(-1 - x - 5 x^2 - x^3)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* _Vincenzo Librandi_, Feb 23 2014 *)
%o A183207 (PARI) a(n) = n^2-n*(1+(-1)^n)/2;
%o A183207 (Magma) I:=[1,2,9,12,25]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // _Vincenzo Librandi_, Feb 23 2014
%Y A183207 Cf. A093005, A370980.
%K A183207 nonn,easy
%O A183207 1,2
%A A183207 _Gary W. Adamson_, Feb 11 2011