A183217 Complement of the pentagonal numbers.
2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93
Offset: 1
Examples
The pentagonal numbers A000326 = (1,5,12,22,35,...), so that this sequence = (2,3,4,6,7,8,9,10,11,13,14,...).
Links
- Kevin Ryde, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[n+Floor[1/2+(2n/3)^(1/2)], {n,100}]
-
PARI
a(n) = n + sqrtint(24*n)\/6; \\ Kevin Ryde, Aug 31 2024
-
Python
from math import isqrt def A183217(n): return n+(isqrt((n<<3)//3)+1>>1) # Chai Wah Wu, Oct 05 2024
Formula
a(n) = n + floor(1/2+(2n/3)^(1/2)).
a(n) = n + A111651(n). - Kevin Ryde, Aug 31 2024