This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183240 #30 Jun 04 2021 03:17:26 %S A183240 1,1,5,46,773,19426,708062,34740805,2230260741,180713279386, %T A183240 18085215373130,2188499311357525,315204533416762046, %U A183240 53270712928769375885,10441561861586014363349,2349364090881443819316871,601444438364480313663234821,173817677082622796179263021770 %N A183240 Sums of the squares of multinomial coefficients. %C A183240 Equals sums of the squares of terms in rows of the triangle of multinomial coefficients (A036038). %C A183240 Ignoring initial term, equals the logarithmic derivative of A183241; A183241 is conjectured to consist entirely of integers. %C A183240 More generally, let {M(n,k), n>=0} be the sums of the k-th powers of the multinomial coefficients where k>=0 (see table A183610), then: %C A183240 Sum_{n>=0} M(n,k)*x^n/n!^k = Product_{n>=1} 1/(1-x^n/n!^k). %H A183240 Vaclav Kotesovec, <a href="/A183240/b183240.txt">Table of n, a(n) for n = 0..250</a> %F A183240 G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} 1/(1-x^n/n!^2). %F A183240 a(n) ~ c * (n!)^2, where c = Product_{k>=2} 1/(1-1/(k!)^2) = 1.37391178018464563291052028168404977854977270679629932106310942272080844... . - _Vaclav Kotesovec_, Feb 19 2015 %e A183240 G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 46*x^3/3!^2 + 773*x^4/4!^2 +... %e A183240 A(x) = 1/((1-x)*(1-x^2/2!^2)*(1-x^3/3!^2)*(1-x^4/4!^2)*...). %e A183240 ... %e A183240 After the initial term a(0)=1, the next several terms are %e A183240 a(1) = 1^2 = 1, %e A183240 a(2) = 1^2 + 2^2 = 5, %e A183240 a(3) = 1^2 + 3^2 + 6^2 = 46, %e A183240 a(4) = 1^2 + 4^2 + 6^2 + 12^2 + 24^2 = 773, %e A183240 a(5) = 1^2 + 5^2 + 10^2 + 20^2 + 30^2 + 60^2 + 120^2 = 19426, %e A183240 and continue with the sums of squares of the terms in triangle A036038. %p A183240 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A183240 b(n-i, min(n-i, i))/i!^2+b(n, i-1)) %p A183240 end: %p A183240 a:= n-> n!^2*b(n$2): %p A183240 seq(a(n), n=0..21); # _Alois P. Heinz_, Sep 11 2019 %t A183240 t=Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i], Length[#1] > Length[#2] &]], {1}], {i, 30}]^2; Plus@@@t (* From Tony D. Noe *) %t A183240 b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, %t A183240 b[n - i, Min[n - i, i]]/i!^2 + b[n, i - 1]]; %t A183240 a[n_] := n!^2 b[n, n]; %t A183240 a /@ Range[0, 21] (* _Jean-François Alcover_, Jun 04 2021, after _Alois P. Heinz_ *) %o A183240 (PARI) {a(n)=n!^2*polcoeff(1/prod(k=1,n,1-x^k/k!^2 +x*O(x^n)),n)} %Y A183240 Cf. A036038, A005651, A183235, A183236, A183237, A183238; A183241. %Y A183240 Cf. A183610 (table of sums of powers of multinomial coefficients). %K A183240 nonn %O A183240 0,3 %A A183240 _Paul D. Hanna_, Jan 03 2011 %E A183240 Terms following a(7) computed by _T. D. Noe_.