A183294 Complement of A005449.
1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1
Programs
-
Mathematica
a=3/2; b=1/2; F[n_]:=a*n^2+b*n; R[n_]:=(n/a+((b-1)/(2a))^2)^(1/2); G[n_]:=n-1+Ceiling[R[n]-(b-1)/(2a)]; Table[F[n], {n,60}] Table[G[n], {n,100}]
-
PARI
a(n) = n + (sqrtint(24*n)+1)\6; \\ Kevin Ryde, Sep 01 2024
-
Python
from math import isqrt def A183294(n): return n+(m:=isqrt((k:=n<<1)//3))+(k>=m*(3*m+5)+4) # Chai Wah Wu, Nov 04 2024
Formula
(See the Mathematica code.)
a(n) = n + A180447(n-1). - Kevin Ryde, Sep 01 2024
a(n) = n+m+1 if 2n>=m(3m+5)+4 and a(n) = n+m otherwise where m = floor(sqrt(2n/3)). - Chai Wah Wu, Nov 04 2024