A183301 Complement of A014105.
1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1
Programs
-
Mathematica
a=2; b=1; F[n_]:=a*n^2+b*n; R[n_]:=(n/a+((b-1)/(2a))^2)^(1/2); G[n_]:=n-1+Ceiling[R[n]-(b-1)/(2a)]; Table[G[n], {n,100}]
-
Python
from math import isqrt def A183301(n): return n+isqrt(n-1>>1) # Chai Wah Wu, Nov 04 2024
Formula
a(n) = n + floor(sqrt((n-1)/2)) = n + A339183(n-1). - Aaron J Grech, Jul 30 2024