A183306 Half the number of nX5 binary arrays with no element equal to a strict majority of its horizontal and vertical neighbors.
3, 9, 42, 178, 910, 4212, 19899, 94217, 445859, 2113257, 10006598, 47387904, 224418390, 1062810762, 5033385029, 23837475807, 112891241315, 534638647159, 2531982065694, 11991154349342, 56788620500294, 268943860673076
Offset: 1
Keywords
Examples
Some solutions with a(1,1)=0 for 5X4 ..0..0..1..0....0..1..1..0....0..1..0..1....0..1..1..0....0..1..0..1 ..1..1..0..1....1..0..0..1....0..1..0..0....1..0..0..1....1..0..0..1 ..0..1..1..0....0..1..1..0....1..0..1..1....1..0..0..1....0..1..1..0 ..1..0..0..1....1..0..0..1....0..1..1..0....0..1..1..0....1..0..1..1 ..1..0..1..0....0..1..0..1....1..0..0..1....1..0..1..0....0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=9*a(n-1)-26*a(n-2)+24*a(n-3)+47*a(n-4)-157*a(n-5)-43*a(n-6)+641*a(n-7)-643*a(n-8)-952*a(n-9)+3460*a(n-10)-2021*a(n-11)-2111*a(n-12)+2715*a(n-13)-1249*a(n-14)-4657*a(n-15)-1514*a(n-16)+1961*a(n-17)-1230*a(n-18)+6713*a(n-19)+8832*a(n-20)+10212*a(n-21)+1971*a(n-22)-6552*a(n-23)-2819*a(n-24)-2898*a(n-25)-973*a(n-26)+302*a(n-27)+433*a(n-28)+286*a(n-29) for n>31
Comments