cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183307 Half the number of nX6 binary arrays with no element equal to a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

5, 14, 93, 572, 4212, 29400, 206755, 1447110, 10149621, 71244598, 500184679, 3512112015, 24658885220, 173129289198, 1215525172167, 8534122345666, 59917715208287, 420680331462689, 2953583636803146, 20737016295243029
Offset: 1

Views

Author

R. H. Hardin Jan 03 2011

Keywords

Comments

Column 6 of A183312

Examples

			Some solutions with a(1,1)=0 for 6X4
..0..0..1..0....0..1..0..1....0..1..0..1....0..1..0..0....0..1..0..1
..1..1..0..1....1..0..1..0....0..1..0..0....1..0..1..1....1..1..0..1
..0..1..0..0....1..0..0..1....1..0..1..1....0..0..1..0....0..0..1..0
..1..0..1..1....0..1..1..0....0..1..1..0....1..1..0..1....1..1..0..1
..0..1..0..0....1..0..0..1....1..0..0..1....0..1..0..0....0..0..1..0
..1..0..1..1....1..0..1..0....0..1..1..0....1..0..1..1....1..0..1..0
		

Programs

  • Maple
    Allowed:= proc(a)
      if nops({a[1],a[2],a[7]})=1 or nops({a[1],a[2],a[3],a[8]})=1
      or nops({a[2],a[3],a[4],a[9]})=1 or nops({a[3],a[4],a[5],a[10]})=1
      or nops({a[4],a[5],a[6],a[11]})=1 or nops({a[5],a[6],a[12]})=1
      or nops({a[1],a[7],a[8]})=1 or nops({a[2],a[7],a[8],a[9]})=1
      or nops({a[3],a[8],a[9],a[10]})=1 or nops({a[4],a[9],a[10],a[11]})=1
      or nops({a[5],a[10],a[11],a[12]})=1 or nops({a[6],a[11],a[12]})=1
      then false else true fi
    end proc:
    Configs:= select(Allowed,[seq(convert(n,base,2)[1..12],n=2^12..2^13-1)]):
    Compatible:= proc(i,j) local Xi,Xj,k;
     Xi:= map(t -> 2*t-1,Configs[i]); Xj:= map(t -> 2*t-1,Configs[j]);
     if Xi[7..12] <> Xj[1..6] then return 0 fi;
     if Xi[7] = signum(Xi[1]+Xi[8]+Xj[7]) then return 0 fi;
     for k from 8 to 11 do if Xi[k] = signum(Xi[k-6]+Xi[k-1]+Xi[k+1]+Xj[k]) then return 0 fi od;
     if Xi[12] = signum(Xi[6]+Xi[11]+Xj[12]) then return 0 fi;
     1
    end proc:
    T:= Matrix(722,722,Compatible):
    uok:= proc(i) local a,k;
       a:= map(t -> 2*t-1, Configs[i]);
       for k from 2 to 5 do if a[k] = signum(a[k-1]+a[k+1]+a[k+6]) then return 0 fi od;
       1
    end proc:
    u:= Vector(722, uok):
    vok:= proc(i) local a,k;
        a:= map(t -> 2*t-1, Configs[i]);
        for k from 8 to 11 do if a[k] = signum(a[k-1]+a[k+1]+a[k-6]) then return 0 fi od;
        1
    end proc:
    v:= Vector(722,vok):
    Tv[0]:= v:
    for nn from 1 to 50 do Tv[nn]:= T . Tv[nn-1] od:
    A:= [10, seq(u^%T . Tv[n],n=0..50)]/2:
    A[1..50]; # Robert Israel, Oct 23 2019

Formula

Linear recurrence of order 93 for n >= 95: see links. - Robert Israel, Oct 23 2019