A183315 Number of n X 3 binary arrays with an element zero only if there are an even number of ones to its left and an even number of ones above it.
5, 13, 43, 124, 377, 1109, 3305, 9767, 28959, 85677, 253693, 750777, 2222308, 6577131, 19466625, 57614249, 170519517, 504678557, 1493676557, 4420766649, 13083945331, 38723960052, 114609540289, 339204648201, 1003928499625
Offset: 1
Keywords
Examples
Some solutions for 5 X 3: ..1..1..1....0..1..1....1..1..0....1..1..0....1..1..0....1..1..1....1..1..0 ..1..1..1....1..1..1....1..1..0....1..1..0....1..1..1....1..1..1....1..1..1 ..0..0..0....1..1..1....0..0..0....0..1..1....1..1..1....0..0..0....0..0..1 ..0..1..1....0..1..1....0..0..0....0..1..1....1..1..0....1..1..0....0..0..1 ..0..1..1....0..0..1....0..1..1....0..0..1....1..1..0....1..1..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A183322.
Formula
Empirical: a(n) = a(n-1) + 9*a(n-2) - 3*a(n-3) - 21*a(n-4) + a(n-5) + 13*a(n-6) + a(n-7) - a(n-8).
Empirical g.f.: x*(5 + 8*x - 15*x^2 - 21*x^3 + 10*x^4 + 13*x^5 - x^7) / (1 - x - 9*x^2 + 3*x^3 + 21*x^4 - x^5 - 13*x^6 - x^7 + x^8). - Colin Barker, Mar 27 2018
Comments