A183316 Number of nX4 binary arrays with an element zero only if there are an even number of ones to its left and an even number of ones above it.
8, 27, 124, 480, 1975, 7833, 31428, 125103, 498825, 1985956, 7906167, 31469417, 125232138, 498389829, 1983161935, 7891800110, 31402125248, 124956937711, 497214816218, 1978508290987, 7872687718931, 31326612697486, 124652113265387
Offset: 1
Keywords
Examples
Some solutions for 5X4 ..0..1..1..0....0..0..0..0....0..1..1..0....0..0..0..1....0..1..1..1 ..0..1..1..0....0..0..0..0....0..1..1..0....0..1..1..1....0..1..1..1 ..1..1..0..0....0..1..1..1....0..0..0..0....0..1..1..0....1..1..0..1 ..1..1..1..1....0..1..1..1....0..0..0..0....0..0..0..0....1..1..0..1 ..0..0..1..1....1..1..1..1....0..0..1..1....0..1..1..0....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=a(n-1)+23*a(n-2)-10*a(n-3)-180*a(n-4)+34*a(n-5)+630*a(n-6)-63*a(n-7)-1081*a(n-8)+73*a(n-9)+914*a(n-10)-50*a(n-11)-352*a(n-12)+14*a(n-13)+47*a(n-14)+a(n-15)-a(n-16)
Comments