A183317 Number of nX5 binary arrays with an element zero only if there are an even number of ones to its left and an even number of ones above it.
13, 57, 377, 1975, 11385, 61755, 343035, 1872913, 10288475, 56225061, 307755285, 1681755047, 9194060283, 50235380141, 274514218163, 1499800424044, 8194423899045, 44768307376625, 244584423489933, 1336207363455509
Offset: 1
Keywords
Examples
Some solutions for 5X5 ..0..0..1..1..0....1..1..0..0..0....0..0..0..0..0....0..0..0..0..1 ..0..0..1..1..1....1..1..0..0..0....0..0..1..1..1....0..0..0..1..1 ..0..0..0..0..1....0..0..0..0..0....0..0..1..1..1....0..0..0..1..1 ..0..1..1..0..0....0..0..0..1..1....0..1..1..0..1....1..1..0..0..1 ..0..1..1..0..1....0..0..0..1..1....1..1..1..1..1....1..1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=a(n-1)+61*a(n-2)-29*a(n-3)-1491*a(n-4)+297*a(n-5)+19701*a(n-6)-1185*a(n-7)-159127*a(n-8)-819*a(n-9)+836109*a(n-10)+27171*a(n-11)-2951431*a(n-12)-125221*a(n-13)+7095801*a(n-14)+329665*a(n-15)-11617381*a(n-16)-586437*a(n-17)+12793417*a(n-18)+723297*a(n-19)-9246383*a(n-20)-590475*a(n-21)+4223841*a(n-22)+294743*a(n-23)-1155939*a(n-24)-81687*a(n-25)+173913*a(n-26)+10715*a(n-27)-12215*a(n-28)-423*a(n-29)+281*a(n-30)-a(n-31)-a(n-32)
Comments