cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A183324 Number of nX3 binary arrays with each 1 adjacent to exactly two other 1s.

Original entry on oeis.org

1, 3, 6, 10, 19, 37, 69, 129, 244, 460, 865, 1629, 3069, 5779, 10882, 20494, 38595, 72681, 136873, 257761, 485416, 914136, 1721505, 3241945, 6105241, 11497411, 21651966, 40775058, 76787731, 144606925, 272324269, 512842017, 965785884
Offset: 1

Views

Author

R. H. Hardin Jan 03 2011

Keywords

Comments

Column 3 of A183328

Examples

			All solutions for 4X3
..0..0..0....0..0..0....1..1..1....0..0..0....0..0..0....0..0..0....1..1..0
..0..0..0....0..0..0....1..0..1....1..1..1....0..1..1....1..1..0....1..1..0
..1..1..0....0..0..0....1..0..1....1..0..1....0..1..1....1..1..0....0..0..0
..1..1..0....0..0..0....1..1..1....1..1..1....0..0..0....0..0..0....0..0..0
...
..0..0..0....0..1..1....1..1..1
..0..0..0....0..1..1....1..0..1
..0..1..1....0..0..0....1..1..1
..0..1..1....0..0..0....0..0..0
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-2)+2*a(n-3)-a(n-4).
Empirical: G.f. -x*(-1-x+x^3-x^2) / ( 1-2*x+x^2-2*x^3+x^4 ), see A033305 - R. J. Mathar, Sep 27 2013

A183325 Number of n X 4 binary arrays with each 1 adjacent to exactly two other 1s.

Original entry on oeis.org

1, 4, 10, 27, 72, 179, 447, 1139, 2912, 7434, 18949, 48256, 122905, 313153, 797993, 2033404, 5181138, 13201355, 33636776, 85706587, 218381247, 556436971, 1417803304, 3612566114, 9204828661, 23453934912, 59760710321, 152270499073
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2011

Keywords

Comments

Column 4 of A183328.

Examples

			Some solutions for 8 X 4:
..1..1..1..1....1..1..1..1....0..0..0..0....1..1..1..0....0..1..1..0
..1..0..0..1....1..0..0..1....0..0..0..0....1..0..1..1....0..1..1..0
..1..1..0..1....1..0..1..1....0..0..1..1....1..0..0..1....0..0..0..0
..0..1..0..1....1..0..1..0....0..0..1..1....1..0..0..1....0..1..1..1
..0..1..0..1....1..0..1..1....0..0..0..0....1..0..0..1....0..1..0..1
..0..1..1..1....1..0..0..1....0..0..1..1....1..0..0..1....1..1..0..1
..0..0..0..0....1..0..0..1....0..0..1..1....1..1..1..1....1..0..0..1
..0..0..0..0....1..1..1..1....0..0..0..0....0..0..0..0....1..1..1..1
		

Crossrefs

Cf. A183328.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 2*a(n-5) - 5*a(n-7) - 3*a(n-8).
Empirical g.f.: x*(1 + x)^2*(1 - x + x^2 + 2*x^3 - 2*x^4 - 3*x^5) / (1 - 3*x + 2*x^2 - 2*x^3 - 2*x^5 + 5*x^7 + 3*x^8). - Colin Barker, Mar 27 2018

A183326 Number of n X 5 binary arrays with each 1 adjacent to exactly two other 1s.

Original entry on oeis.org

1, 6, 19, 72, 289, 996, 3325, 11415, 39720, 138689, 483837, 1682961, 5845649, 20310166, 70604782, 245504404, 853649448, 2967979455, 10318546476, 35873587105, 124720541039, 433616480871, 1507558685202, 5241330944265
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2011

Keywords

Examples

			Some solutions for 7X5
..0..1..1..1..1....0..1..1..0..0....1..1..0..1..1....0..0..1..1..1
..1..1..0..0..1....0..1..1..0..0....1..1..0..1..1....1..1..1..0..1
..1..0..0..1..1....0..0..0..0..0....0..0..0..0..0....1..0..0..0..1
..1..0..0..1..0....0..0..1..1..1....0..1..1..1..0....1..1..0..1..1
..1..0..0..1..0....0..1..1..0..1....0..1..0..1..1....0..1..0..1..0
..1..1..0..1..0....0..1..0..1..1....0..1..0..0..1....0..1..0..1..0
..0..1..1..1..0....0..1..1..1..0....0..1..1..1..1....0..1..1..1..0
		

Crossrefs

Column 5 of A183328.

Formula

Empirical: a(n)=5*a(n-1)-8*a(n-2)+9*a(n-3)-2*a(n-4)+14*a(n-5)+3*a(n-6)-44*a(n-7)+18*a(n-8)+29*a(n-9)-10*a(n-10)-69*a(n-11)+16*a(n-12)+87*a(n-13)+15*a(n-14)-55*a(n-15)-40*a(n-16)+6*a(n-17)+9*a(n-18)+4*a(n-19)-2*a(n-20).
Empirical formula verified (see link). - Robert Israel, May 01 2019

A183327 Number of n X 6 binary arrays with each 1 adjacent to exactly two other 1's.

Original entry on oeis.org

1, 9, 37, 179, 996, 4740, 21259, 96524, 443793, 2054180, 9533062, 44194763, 204545507, 946059367, 4375861741, 20244334715, 93671407936, 433436316256, 2005547859261, 9279593479796, 42935853340895, 198660544800120
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2011

Keywords

Comments

Column 6 of A183328.

Examples

			Some solutions for 4 X 6
..0..1..1..1..1..1....0..0..0..0..0..0....0..1..1..1..1..1....0..1..1..1..1..0
..0..1..0..0..0..1....0..0..0..1..1..1....0..1..0..0..0..1....1..1..0..0..1..1
..0..1..1..0..0..1....0..0..0..1..0..1....0..1..0..0..1..1....1..0..0..0..0..1
..0..0..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..0....1..1..1..1..1..1
		

Crossrefs

Cf. A183328.

Formula

Empirical: a(n)=7*a(n-1)-18*a(n-2)+38*a(n-3)-48*a(n-4)+110*a(n-5)-30*a(n-6)+13*a(n-7)+12*a(n-8)-168*a(n-9)+12*a(n-10)+396*a(n-11)+2076*a(n-12)-2107*a(n-13)-11936*a(n-14)-23630*a(n-15)-11374*a(n-16)+33929*a(n-17)+86596*a(n-18)+85928*a(n-19)-5767*a(n-20)-137160*a(n-21)-186375*a(n-22)-82400*a(n-23)+98660*a(n-24)+206026*a(n-25)+154539*a(n-26)+271*a(n-27)-129682*a(n-28)-144333*a(n-29)-59907*a(n-30)+31467*a(n-31)+61883*a(n-32)+37532*a(n-33)+5039*a(n-34)-7723*a(n-35)-5583*a(n-36)-944*a(n-37)+520*a(n-38)+332*a(n-39)+24*a(n-40)-32*a(n-41).

A183323 Number of n X n binary arrays with each 1 adjacent to exactly two other 1s.

Original entry on oeis.org

1, 2, 6, 27, 289, 4740, 128371, 6115158, 505971397, 73890230419, 19136191954838, 8704355999401819, 6908686513461201175, 9552034660752931158279
Offset: 1

Views

Author

R. H. Hardin Jan 03 2011

Keywords

Comments

Diagonal of A183328

Examples

			Some solutions for 6X6
..1..1..1..0..0..0....0..1..1..1..1..0....0..0..0..1..1..1....0..0..1..1..1..1
..1..0..1..0..1..1....0..1..0..0..1..1....0..0..1..1..0..1....0..0..1..0..0..1
..1..0..1..0..1..1....1..1..0..0..0..1....0..1..1..0..1..1....1..1..1..0..0..1
..1..1..1..0..0..0....1..0..0..0..1..1....0..1..0..1..1..0....1..0..0..0..0..1
..0..0..0..1..1..0....1..1..0..1..1..0....0..1..0..1..0..0....1..0..0..0..1..1
..0..0..0..1..1..0....0..1..1..1..0..0....0..1..1..1..0..0....1..1..1..1..1..0
		
Showing 1-5 of 5 results.