This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183356 #15 Apr 22 2018 04:53:10 %S A183356 36,576,1296,3600,9216,24336,63504,166464,435600,1140624,2985984, %T A183356 7817616,20466576,53582400,140280336,367258896,961496064,2517229584, %U A183356 6590192400,17253347904,45169851024,118256205456,309598765056,810540090000 %N A183356 One quarter the number of n X 4 1..4 arrays with no two neighbors of any element equal to each other. %C A183356 Column 4 of A183362. %H A183356 R. H. Hardin, <a href="/A183356/b183356.txt">Table of n, a(n) for n = 1..200</a> %F A183356 Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>4. %F A183356 Conjectures from _Colin Barker_, Mar 28 2018: (Start) %F A183356 G.f.: 36*x*(1 + 14*x + 2*x^2 - 3*x^3) / ((1 + x)*(1 - 3*x + x^2)). %F A183356 a(n) = (9/5)*2^(3-n)*((-1)^n*2^(2+n) + (3-sqrt(5))^(1+n) + (3+sqrt(5))^(1+n)) for n>1. %F A183356 (End) %F A183356 Assuming Colin Barker's conjectures, a(n) = (12*Fibonacci(n+1))^2, n>1. - _Ehren Metcalfe_, Apr 21 2018 %e A183356 Some solutions for 5 X 4 with a(1,1)=1: %e A183356 1 4 3 3 1 1 4 4 1 2 4 1 1 4 2 2 1 1 3 4 %e A183356 2 4 1 1 4 2 3 1 3 2 4 1 1 4 3 3 2 2 3 1 %e A183356 3 3 2 2 4 2 3 1 4 1 3 3 3 2 1 1 3 4 4 2 %e A183356 1 1 4 4 3 1 4 4 4 1 2 2 3 2 4 4 3 1 1 3 %e A183356 4 2 3 1 3 1 2 2 2 3 4 1 1 1 3 2 4 2 2 4 %Y A183356 Cf. A183362. %K A183356 nonn %O A183356 1,1 %A A183356 _R. H. Hardin_, Jan 04 2011