A183357 One quarter the number of n X 5 1..4 arrays with no two neighbors of any element equal to each other.
108, 2304, 3888, 9216, 24192, 57600, 137088, 331776, 802944, 1937664, 4675968, 11289600, 27257472, 65804544, 158864256, 383533056, 925932672, 2235398400, 5396727168, 13028852736, 31454434944, 75937722624, 183329877888
Offset: 1
Keywords
Examples
Some solutions for 7 X 5 with a(1,1)=1: ..1..1..2..4..1....1..2..2..3..3....1..2..2..3..3....1..1..3..4..1 ..4..3..3..4..2....1..4..4..1..2....3..4..4..1..1....4..2..2..4..3 ..2..2..1..1..3....2..3..3..1..2....2..1..3..2..2....3..3..1..1..2 ..3..4..4..2..3....4..1..2..4..4....2..1..3..4..4....2..4..4..3..2 ..1..1..3..2..1....3..1..2..3..3....3..4..2..1..1....1..1..2..3..1 ..4..2..3..4..4....2..4..4..1..2....3..4..2..3..3....4..3..2..4..1 ..3..2..1..1..2....2..3..3..1..4....2..1..1..4..2....2..3..1..4..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A183362.
Formula
Empirical: a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4) for n>7.
Empirical g.f.: 36*x*(3 + 58*x - 20*x^2 + 34*x^3 + 29*x^4 - 24*x^5 - 12*x^6) / ((1 + x^2)*(1 - 2*x - x^2)). - Colin Barker, Mar 28 2018
Comments