A183364 Number of n X 2 binary arrays with no element equal to the sum mod 3 of its horizontal and vertical neighbors.
2, 3, 5, 12, 21, 41, 84, 171, 355, 732, 1517, 3165, 6608, 13809, 28871, 60398, 126425, 264681, 554188, 1160473, 2430233, 5089614, 10659415, 22324873, 46757436, 97930229, 205109405, 429591772, 899761459, 1884515059, 3947047760, 8266953369
Offset: 1
Keywords
Examples
Some solutions for 5 X 2: ..0..0....1..0....0..1....0..1....0..0....1..1....1..1....0..1....1..0....1..1 ..1..1....0..0....0..0....1..0....1..1....1..1....1..1....1..0....0..0....1..1 ..1..1....1..1....1..1....0..0....1..1....1..1....0..0....0..0....0..1....1..1 ..0..0....1..1....1..1....0..1....1..1....1..1....1..0....1..1....0..0....0..0 ..1..0....1..1....1..1....1..0....1..1....0..0....0..1....1..1....1..0....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A183368.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-3) - 4*a(n-6) - 3*a(n-7) + a(n-10).
Empirical g.f.: x*(1 + x)*(2 - 3*x + 2*x^2 - 2*x^3 - 4*x^4 - 2*x^5 + x^8) / (1 - 2*x - x^3 + 4*x^6 + 3*x^7 - x^10). - Colin Barker, Mar 28 2018
Comments