A183365 Number of nX3 binary arrays with no element equal to the sum mod 3 of its horizontal and vertical neighbors.
2, 5, 18, 39, 108, 288, 795, 2278, 6438, 18394, 52556, 150565, 431730, 1238954, 3556322, 10210036, 29317763, 84190569, 241782416, 694380738, 1994246166, 5727497628, 16449560195, 47243891395, 135686993036, 389700996218
Offset: 1
Keywords
Examples
Some solutions for 5X3 ..1..0..1....1..1..1....0..1..1....0..0..0....1..1..0....0..1..1....1..1..0 ..0..0..0....1..1..1....1..1..1....1..1..1....1..1..0....0..1..1....1..1..0 ..1..1..0....0..0..0....1..0..1....1..1..1....1..1..0....0..1..1....0..0..1 ..1..1..0....0..0..1....1..1..1....0..0..0....0..1..1....0..1..1....1..0..0 ..0..0..1....1..0..0....1..1..0....0..1..0....0..1..1....1..0..0....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=3*a(n-1)+a(n-3)-4*a(n-4)+4*a(n-5)-22*a(n-6)-12*a(n-7)-21*a(n-8)+22*a(n-9)-13*a(n-10)+115*a(n-11)+79*a(n-12)+116*a(n-13)-45*a(n-14)+172*a(n-15)-75*a(n-16)-54*a(n-17)-181*a(n-18)-85*a(n-19)-61*a(n-20)-11*a(n-21)-158*a(n-22)+80*a(n-23)+157*a(n-24)+215*a(n-25)-78*a(n-26)-211*a(n-27)-196*a(n-28)-51*a(n-29)+44*a(n-30)+81*a(n-31)+64*a(n-32)+13*a(n-33)-13*a(n-34)-12*a(n-35)-7*a(n-36)-a(n-37)+a(n-38)+a(n-39)
Comments