cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183365 Number of nX3 binary arrays with no element equal to the sum mod 3 of its horizontal and vertical neighbors.

Original entry on oeis.org

2, 5, 18, 39, 108, 288, 795, 2278, 6438, 18394, 52556, 150565, 431730, 1238954, 3556322, 10210036, 29317763, 84190569, 241782416, 694380738, 1994246166, 5727497628, 16449560195, 47243891395, 135686993036, 389700996218
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Column 3 of A183368

Examples

			Some solutions for 5X3
..1..0..1....1..1..1....0..1..1....0..0..0....1..1..0....0..1..1....1..1..0
..0..0..0....1..1..1....1..1..1....1..1..1....1..1..0....0..1..1....1..1..0
..1..1..0....0..0..0....1..0..1....1..1..1....1..1..0....0..1..1....0..0..1
..1..1..0....0..0..1....1..1..1....0..0..0....0..1..1....0..1..1....1..0..0
..0..0..1....1..0..0....1..1..0....0..1..0....0..1..1....1..0..0....0..1..0
		

Formula

Empirical: a(n)=3*a(n-1)+a(n-3)-4*a(n-4)+4*a(n-5)-22*a(n-6)-12*a(n-7)-21*a(n-8)+22*a(n-9)-13*a(n-10)+115*a(n-11)+79*a(n-12)+116*a(n-13)-45*a(n-14)+172*a(n-15)-75*a(n-16)-54*a(n-17)-181*a(n-18)-85*a(n-19)-61*a(n-20)-11*a(n-21)-158*a(n-22)+80*a(n-23)+157*a(n-24)+215*a(n-25)-78*a(n-26)-211*a(n-27)-196*a(n-28)-51*a(n-29)+44*a(n-30)+81*a(n-31)+64*a(n-32)+13*a(n-33)-13*a(n-34)-12*a(n-35)-7*a(n-36)-a(n-37)+a(n-38)+a(n-39)