cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183374 T(n,k)=Number of nXk binary arrays with no element equal to the mod 3 sum of its diagonal and antidiagonal neighbors.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 9, 6, 9, 1, 1, 16, 16, 16, 16, 1, 1, 25, 30, 49, 30, 25, 1, 1, 49, 64, 64, 64, 64, 49, 1, 1, 81, 165, 144, 195, 144, 165, 81, 1, 1, 144, 361, 729, 625, 625, 729, 361, 144, 1, 1, 256, 875, 2304, 2580, 3969, 2580, 2304, 875, 256, 1, 1, 441, 2116
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Table starts
.1...1....1.....1......1.......1.........1..........1...........1.............1
.1...4....4.....9.....16......25........49.........81.........144...........256
.1...4....6....16.....30......64.......165........361.........875..........2116
.1...9...16....49.....64.....144.......729.......2304........6724.........22500
.1..16...30....64....195.....625......2580.......8836.......34903........148996
.1..25...64...144....625....3969.....22801.....104329......580644.......3763600
.1..49..165...729...2580...22801....285516....1999396....15732530.....141039376
.1..81..361..2304...8836..104329...1999396...22743361...233203441....2719518201
.1.144..875..6724..34903..580644..15732530..233203441..3414837564...58892126329
.1.256.2116.22500.148996.3763600.141039376.2719518201.58892126329.1467194393284

Examples

			Some solutions for 6X5
..0..1..0..0..1....1..1..0..1..0....0..0..1..1..0....0..0..1..1..0
..0..1..0..0..1....0..0..0..1..0....1..1..0..1..0....1..1..0..1..0
..0..0..0..0..1....0..0..1..0..1....0..0..1..0..0....0..0..1..1..0
..1..0..0..0..0....0..1..1..1..0....0..0..1..0..0....0..0..0..0..0
..1..0..0..1..0....0..1..1..1..0....1..1..0..1..0....0..1..0..0..0
..1..0..0..1..0....0..0..1..0..0....0..0..1..1..0....0..1..0..1..1
		

Crossrefs

Column 2 is A133037(n+6)