cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A183376 Number of nX3 binary arrays with no element equal to the mod 3 sum of its king-move neighbors.

Original entry on oeis.org

2, 9, 28, 68, 143, 364, 952, 2509, 6412, 16544, 42939, 111540, 291108, 757309, 1972172, 5144362, 13414809, 34987626, 91292436, 238197883, 621533082, 1622128746, 4233391807, 11048462916, 28837147416, 75265508987, 196446917068
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Column 3 of A183380

Examples

			Some solutions for 5X3
..0..1..0....1..1..0....1..1..1....0..1..1....0..1..0....0..1..1....0..1..0
..1..0..1....1..0..1....1..1..1....0..1..1....1..0..1....1..0..1....1..0..1
..1..0..1....0..1..0....1..1..1....0..0..0....1..0..1....0..1..0....1..0..1
..1..1..1....0..0..0....1..1..1....0..0..0....1..1..1....1..1..1....0..1..0
..1..0..1....0..1..0....1..1..1....1..0..1....1..0..0....1..0..1....0..0..0
		

A183377 Number of nX4 binary arrays with no element equal to the mod 3 sum of its king-move neighbors.

Original entry on oeis.org

3, 20, 68, 225, 627, 2152, 7036, 22392, 74381, 241819, 793240, 2604908, 8530131, 28013101, 91893580, 301557767, 989945590, 3248890744, 10664829792, 35007809686, 114914687393, 377229380984, 1238309771635, 4064987753276
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Column 4 of A183380

Examples

			Some solutions for 5X4
..1..1..1..0....1..0..0..0....0..1..0..0....1..0..1..1....0..1..1..0
..0..1..0..1....1..1..1..0....1..0..1..0....1..1..1..0....0..1..1..0
..0..1..1..1....0..0..0..1....1..0..0..1....0..1..1..0....1..1..1..1
..0..0..1..0....1..1..0..1....0..1..0..1....0..1..1..1....1..0..1..0
..0..1..1..0....1..0..1..1....0..0..1..1....1..1..0..0....0..1..1..0
		

A183378 Number of nX5 binary arrays with no element equal to the mod 3 sum of its king-move neighbors.

Original entry on oeis.org

4, 37, 143, 627, 2767, 11345, 51706, 223151, 974387, 4317835, 18935262, 83405497, 367312087, 1616039971, 7119896616, 31348982360, 138041608632, 607987526596, 2677387312069, 11791160763537, 51928980096226, 228692213910063
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Column 5 of A183380

Examples

			Some solutions for 7X5
..0..1..1..0..1....0..1..0..1..0....1..0..0..1..0....0..1..1..0..0
..1..0..1..1..1....1..0..1..1..0....0..0..0..0..0....0..0..1..1..1
..1..1..1..1..0....0..1..1..0..0....0..1..0..0..0....0..1..1..1..1
..0..1..0..1..1....1..1..1..0..0....0..1..1..1..0....0..0..1..1..1
..1..0..1..1..0....0..1..1..0..1....0..0..0..0..1....0..1..1..0..0
..1..0..1..1..0....1..1..0..1..1....0..0..0..1..1....1..0..0..0..0
..0..1..0..1..1....1..0..1..0..1....1..0..0..0..0....1..1..0..1..0
		

A183379 Number of nX6 binary arrays with no element equal to the mod 3 sum of its king-move neighbors.

Original entry on oeis.org

5, 61, 364, 2152, 11345, 64530, 377217, 2204567, 12979097, 75859054, 448363239, 2645398817, 15584119501, 92019523654, 543278320078, 3206689314883, 18935258251385, 111811695711103, 660218618968515, 3898720818850631
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Column 6 of A183380

Examples

			Some solutions for 5X6
..1..0..1..0..1..1....1..0..0..1..1..0....0..0..0..0..1..0....0..1..0..1..1..0
..0..0..0..0..0..1....1..1..1..1..0..0....0..1..0..0..0..0....0..1..1..0..0..1
..0..1..1..1..0..1....0..1..1..0..1..0....1..0..1..0..0..1....1..1..1..0..1..1
..0..0..1..0..1..1....0..1..0..0..0..1....0..1..0..0..0..0....0..1..1..0..0..1
..1..0..0..0..0..0....0..0..1..1..1..0....1..1..1..0..0..1....1..1..0..1..1..0
		

A183375 Number of n X n binary arrays with no element equal to the mod 3 sum of its king-move neighbors.

Original entry on oeis.org

1, 5, 28, 225, 2767, 64530, 2952294, 238729120, 34520238211
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Diagonal of A183380

Examples

			Some solutions for 5X5
..1..1..0..0..1....0..0..0..1..0....1..1..0..1..1....1..0..0..0..0
..0..1..0..0..0....1..0..1..0..1....1..0..1..1..0....0..0..0..1..0
..0..1..0..1..0....1..1..1..0..1....0..0..1..1..0....1..0..0..0..0
..1..1..0..0..0....0..1..1..1..1....0..0..1..1..1....0..0..0..0..0
..0..0..0..1..0....0..1..0..0..1....0..1..1..0..1....0..1..0..0..1
		
Showing 1-5 of 5 results.