A183444 Number of n X 3 binary arrays with every 1 having exactly two king-move neighbors equal to 1.
1, 9, 18, 30, 107, 265, 553, 1505, 3852, 8922, 22477, 56889, 137617, 340401, 851098, 2091618, 5160851, 12817517, 31655009, 78159377, 193558964, 478614470, 1182673261, 2925763109, 7235864705, 17887850273, 44237338898, 109401520982
Offset: 1
Keywords
Examples
Some solutions for 5 X 3: ..0..1..0....1..1..0....0..0..0....0..0..0....1..1..0....0..0..0....0..0..1 ..0..1..1....1..0..0....0..1..1....0..1..0....0..1..0....0..0..0....0..1..1 ..0..0..0....0..0..0....0..0..1....1..0..1....0..0..0....0..0..0....0..0..0 ..0..1..0....0..1..1....1..0..0....1..0..1....1..0..0....1..1..0....1..0..0 ..1..1..0....0..0..1....1..1..0....0..1..0....1..1..0....1..0..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A183450.
Formula
Empirical: a(n) = 2*a(n-1) - a(n-2) + 8*a(n-3) - 7*a(n-4) + 2*a(n-5) - 2*a(n-6).
Empirical g.f.: x*(1 + 7*x + x^2 - 5*x^3 - 2*x^5) / (1 - 2*x + x^2 - 8*x^3 + 7*x^4 - 2*x^5 + 2*x^6). - Colin Barker, Feb 27 2018
Comments