A183445 Number of n X 4 binary arrays with every 1 having exactly two king-move neighbors equal to 1.
1, 13, 30, 72, 283, 831, 2399, 7761, 23840, 72396, 225569, 696929, 2144537, 6635889, 20510002, 63318408, 195704391, 604826763, 1868678179, 5774848073, 17846507936, 55148861000, 170427655945, 526681961257, 1627610746225, 5029867948101
Offset: 1
Keywords
Examples
Some solutions for 5 X 4: ..0..1..0..0....1..1..0..0....0..1..1..0....0..1..0..0....0..0..1..0 ..1..0..1..0....0..1..0..0....0..0..1..0....1..1..0..0....0..1..1..0 ..1..0..1..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0 ..0..1..0..0....1..1..0..0....0..1..0..0....0..1..0..0....1..0..0..0 ..0..0..0..0....0..1..0..0....1..1..0..0....0..1..1..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A183450.
Formula
Empirical: a(n) = 3*a(n-1) + a(n-2) + 5*a(n-3) - 18*a(n-4) - 16*a(n-5) + 7*a(n-6) + 3*a(n-7) + a(n-8) - a(n-9).
Empirical g.f.: x*(1 + x)*(1 + 9*x - 19*x^2 - 17*x^3 + 7*x^4 + 3*x^5 + x^6 - x^7) / (1 - 3*x - x^2 - 5*x^3 + 18*x^4 + 16*x^5 - 7*x^6 - 3*x^7 - x^8 + x^9). - Colin Barker, Mar 29 2018
Comments