cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183445 Number of n X 4 binary arrays with every 1 having exactly two king-move neighbors equal to 1.

Original entry on oeis.org

1, 13, 30, 72, 283, 831, 2399, 7761, 23840, 72396, 225569, 696929, 2144537, 6635889, 20510002, 63318408, 195704391, 604826763, 1868678179, 5774848073, 17846507936, 55148861000, 170427655945, 526681961257, 1627610746225, 5029867948101
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2011

Keywords

Comments

Column 4 of A183450.

Examples

			Some solutions for 5 X 4:
..0..1..0..0....1..1..0..0....0..1..1..0....0..1..0..0....0..0..1..0
..1..0..1..0....0..1..0..0....0..0..1..0....1..1..0..0....0..1..1..0
..1..0..1..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..1..0..0....1..1..0..0....0..1..0..0....0..1..0..0....1..0..0..0
..0..0..0..0....0..1..0..0....1..1..0..0....0..1..1..0....1..1..0..0
		

Crossrefs

Cf. A183450.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) + 5*a(n-3) - 18*a(n-4) - 16*a(n-5) + 7*a(n-6) + 3*a(n-7) + a(n-8) - a(n-9).
Empirical g.f.: x*(1 + x)*(1 + 9*x - 19*x^2 - 17*x^3 + 7*x^4 + 3*x^5 + x^6 - x^7) / (1 - 3*x - x^2 - 5*x^3 + 18*x^4 + 16*x^5 - 7*x^6 - 3*x^7 - x^8 + x^9). - Colin Barker, Mar 29 2018