cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183477 Number of nX3 0..2 arrays with every element equal to either the sum mod 3 of its vertical neighbors or the sum mod 3 of its horizontal neighbors.

Original entry on oeis.org

5, 39, 117, 587, 2925, 12131, 58333, 270611, 1220877, 5724163, 26403017, 121544939, 564597457, 2608586447, 12062272841, 55880316803, 258485374601, 1196311279235, 5538446306557, 25631318490835, 118643423750561, 549199683026799
Offset: 1

Views

Author

R. H. Hardin Jan 05 2011

Keywords

Comments

Column 3 of A183483

Examples

			Some solutions for 4X3
..1..1..0....1..1..1....0..2..2....1..1..0....1..1..0....2..2..0....1..1..0
..1..1..0....1..1..0....0..0..0....1..1..0....1..1..0....0..0..0....1..1..0
..1..1..0....2..2..2....1..0..2....0..0..0....2..2..0....1..0..0....0..0..0
..1..1..0....2..1..2....1..0..2....0..0..0....2..2..0....1..0..0....2..2..0
		

Formula

Empirical: a(n)=8*a(n-1)-18*a(n-2)+84*a(n-3)-579*a(n-4)+1348*a(n-5)-3464*a(n-6)+18376*a(n-7)-41015*a(n-8)+79527*a(n-9)-334512*a(n-10)+695496*a(n-11)-1111399*a(n-12)+3876831*a(n-13)-7441854*a(n-14)+10184221*a(n-15)-30655065*a(n-16)+54160710*a(n-17)-64701205*a(n-18)+173693460*a(n-19)-281900303*a(n-20)+296755925*a(n-21)-730333225*a(n-22)+1086432175*a(n-23)-1011789825*a(n-24)+2336474256*a(n-25)-3177451713*a(n-26)+2619035208*a(n-27)-5787685442*a(n-28)+7177420278*a(n-29)-5223552815*a(n-30)+11228646436*a(n-31)-12673488056*a(n-32)+8097165320*a(n-33)-17162050486*a(n-34)+17603349821*a(n-35)-9768296437*a(n-36)+20663234591*a(n-37)-19224576837*a(n-38)+9099536459*a(n-39)-19470134294*a(n-40)+16378130019*a(n-41)-6427344807*a(n-42)+14168986173*a(n-43)-10725609446*a(n-44)+3343950376*a(n-45)-7805973809*a(n-46)+5287675974*a(n-47)-1227503579*a(n-48)+3163113462*a(n-49)-1907177092*a(n-50)+293721475*a(n-51)-900778627*a(n-52)+482493019*a(n-53)-34626683*a(n-54)+165703644*a(n-55)-80150140*a(n-56)-3548276*a(n-57)-16126436*a(n-58)+7908948*a(n-59)+2463356*a(n-60)+267632*a(n-61)-411136*a(n-62)-464048*a(n-63)+49264*a(n-64)+9792*a(n-65)+28416*a(n-66)