A183544 Ordering of the numbers in the tree A183542; complement of A183545.
1, 2, 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103
Offset: 1
Keywords
Programs
-
Mathematica
nn=200; g=(1+5^(1/2))/2; t={1}; t0=t; While[t=Select[Union[t,-2+Floor[(t+2)g], t+Floor[(t+2)g]], #<=nn&]; t0 !=t, t0=t];t
-
Python
from itertools import islice def A183544_gen(): # generator of terms a, b, i = 1, 1, 0 while True: yield from (j+a for j in range(i,i+a)) i += a a, b = b, a+b A183544_list = list(islice(A183544_gen(),30)) # Chai Wah Wu, Oct 13 2022
Formula
The monotonic ordering of the numbers in the set S generated by these rules: 1 is in S, and if n is in S, then -2+Floor[(n+2)r] and n+Floor[(n+2)r] are in S, where r=(1+sqrt(5))/2, the golden ratio.
Comments