cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183547 Number of n X 2 0..2 arrays with each element equal to either the maximum or the minimum of its horizontal and vertical neighbors.

Original entry on oeis.org

3, 15, 71, 299, 1325, 5845, 25785, 113841, 502523, 2218399, 9793287, 43233099, 190855613, 842545925, 3719480233, 16419916497, 72486917979, 319998782959, 1412657953559, 6236281512443, 27530519336653, 121535484480133
Offset: 1

Views

Author

R. H. Hardin, Jan 05 2011

Keywords

Comments

Column 2 of A183554.

Examples

			Some solutions for 3 X 2:
..0..0....2..2....1..1....2..2....1..1....0..0....2..1....1..1....0..0....2..2
..1..0....1..2....2..1....0..0....0..1....1..1....2..1....0..0....2..0....0..2
..1..1....1..1....2..1....1..1....0..1....1..1....2..1....1..1....2..0....0..2
		

Crossrefs

Cf. A183554.

Formula

Empirical: a(n) = 5*a(n-1) - 3*a(n-2) + 4*a(n-3) - 9*a(n-4) - 13*a(n-6) + 8*a(n-7) + 4*a(n-8) + 7*a(n-9) + 2*a(n-10).
Empirical g.f.: x*(3 + 5*x^2 - 23*x^3 + 10*x^4 - 32*x^5 + 17*x^6 + 13*x^7 + 9*x^8 + 10*x^9) / (1 - 5*x + 3*x^2 - 4*x^3 + 9*x^4 + 13*x^6 - 8*x^7 - 4*x^8 - 7*x^9 - 2*x^10). - Colin Barker, Mar 29 2018