This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183555 #8 Mar 31 2012 23:00:47 %S A183555 0,15,159,303,2887,5471,51839,98207,930247,1762287,16692639,31622991 %N A183555 Positions of the records of the positive integers in A179319; a(n) is the first position in A179319 equal to +n. %C A183555 The g.f. of A059973 is (x+x^2-2*x^3)/(1-4*x^2-x^4). %F A183555 Conjecture: the positions of the records of the positive integers in A179319 are given by: %F A183555 * a(2n-1) = A059973(4n+1) - 2 for n>1, with a(1) = 0; %F A183555 * a(2n) = A059973(4n+2) - 2 for n>=1. %e A183555 Define WL(x) and WU(x) to be respectively the characteristic functions of the lower (A000201) and upper (A001950) Wythoff sequences: %e A183555 * WL(x) = 1 + x + x^3 + x^4 + x^6 + x^8 + x^9 + x^11 +...+ x^[n*phi] +... %e A183555 * WU(x) = 1 + x^2 + x^5 + x^7 + x^10 + x^13 + x^15 +...+ x^[n*(phi+1)] +... %e A183555 Then the g.f. of A179319 is the product: %e A183555 * WL(-x)*WU(x) = 1 - x + x^2 - 2*x^3 + x^4 + x^6 + x^7 + x^10 - x^11 + x^12 + x^13 + x^14 + 2*x^15 +...+ A179319(n)*x^n +... %e A183555 in which it is conjectured that the following holds: %e A183555 * A179319(A059973(4n+1) - 2) = 2n-1 for n>=1; %e A183555 * A179319(A059973(4n+2) - 2) = 2n for n>=1. %Y A183555 Cf. A183556, A179319, A059973, A183557, A000201, A001950. %K A183555 nonn,more %O A183555 1,2 %A A183555 _Paul D. Hanna_, Jan 12 2011 %E A183555 Terms a(9) - a(12) computed by _D. S. McNeil_, Dec 28 2010.