This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183556 #8 Mar 31 2012 23:00:47 %S A183556 1,3,37,71,681,1291,12237,23183,219601,416019,3940597,7465175 %N A183556 Positions of the records of the negative integers in A179319; a(n) is the first position in A179319 equal to -n. %C A183556 The g.f. of A059973 is (x+x^2-2*x^3)/(1-4*x^2-x^4). %F A183556 Conjecture: the positions of the records of the negative integers in A179319 are given by: %F A183556 * a(2n-1) = A059973(4n-1) - 1 for n>=1; %F A183556 * a(2n) = A059973(4n) - 1 for n>=1. %e A183556 Define WL(x) and WU(x) to be respectively the characteristic functions of the lower (A000201) and upper (A001950) Wythoff sequences: %e A183556 * WL(x) = 1 + x + x^3 + x^4 + x^6 + x^8 + x^9 + x^11 +...+ x^[n*phi] +... %e A183556 * WU(x) = 1 + x^2 + x^5 + x^7 + x^10 + x^13 + x^15 +...+ x^[n*(phi+1)] +... %e A183556 then the g.f. of A179319 is the product: %e A183556 * WL(-x)*WU(x) = 1 - x + x^2 - 2*x^3 + x^4 + x^6 + x^7 + x^10 - x^11 + x^12 + x^13 + x^14 + 2*x^15 +...+ A179319(n)*x^n +... %e A183556 in which it is conjectured that the following holds: %e A183556 * A179319(A059973(4n-1)-1) = -(2n-1) for n>=1; %e A183556 * A179319(A059973(4n)-1) = -(2n) for n>=1. %Y A183556 Cf. A183555, A179319, A059973, A183557, A000201, A001950. %K A183556 nonn,more %O A183556 1,2 %A A183556 _Paul D. Hanna_, Jan 12 2011 %E A183556 Terms a(10) - a(12) computed by _D. S. McNeil_, Dec 28 2010.