This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183565 #19 Jun 12 2025 08:03:15 %S A183565 1,0,1,1,2,2,4,4,8,9,13,16,24,28,40,49,66,82,110,132,175,214,274,336, %T A183565 428,520,655,798,990,1203,1486,1793,2200,2653,3227,3880,4701,5622, %U A183565 6779,8092,9701,11546,13793,16355,19466,23029,27290,32199,38048,44752,52719 %N A183565 Number of partitions of n containing a clique of size 8. %C A183565 All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique. %H A183565 Alois P. Heinz, <a href="/A183565/b183565.txt">Table of n, a(n) for n = 8..1000</a> %F A183565 G.f.: (1-Product_{j>0} (1-x^(8*j)+x^(9*j))) / (Product_{j>0} (1-x^j)). %F A183565 a(n) = A000041(n) - A184643(n). - _Vaclav Kotesovec_, Jun 12 2025 %e A183565 a(12) = 2, because 2 partitions of 12 contain (at least) one clique of size 8: [1,1,1,1,1,1,1,1,2,2], [1,1,1,1,1,1,1,1,4]. %p A183565 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], %p A183565 add((l->`if`(j=8, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) %p A183565 end: %p A183565 a:= n-> (l-> l[2])(b(n, n)): %p A183565 seq(a(n), n=8..60); %t A183565 max = 60; f = (1 - Product[1 - x^(8j) + x^(9j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 8] (* _Jean-François Alcover_, Oct 01 2014 *) %t A183565 c8[n_]:=If[MemberQ[Tally[n][[All,2]],8],1,0]; Table[Total[c8/@ IntegerPartitions[ x]],{x,8,60}] (* _Harvey P. Dale_, Aug 12 2018 *) %Y A183565 8th column of A183568. Cf. A000041, A183558, A183559, A183560, A183561, A183562, A183563, A183564, A183566, A183567. %K A183565 nonn %O A183565 8,5 %A A183565 _Alois P. Heinz_, Jan 05 2011